首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   638篇
  免费   70篇
  2021年   5篇
  2020年   4篇
  2019年   8篇
  2018年   5篇
  2017年   13篇
  2016年   20篇
  2015年   35篇
  2014年   25篇
  2013年   39篇
  2012年   30篇
  2011年   20篇
  2010年   16篇
  2009年   28篇
  2008年   25篇
  2007年   29篇
  2006年   29篇
  2005年   21篇
  2004年   26篇
  2003年   16篇
  2002年   19篇
  2001年   20篇
  2000年   13篇
  1999年   21篇
  1998年   15篇
  1997年   18篇
  1996年   9篇
  1995年   7篇
  1994年   9篇
  1993年   8篇
  1992年   13篇
  1991年   11篇
  1990年   11篇
  1989年   4篇
  1988年   8篇
  1987年   10篇
  1986年   7篇
  1985年   7篇
  1984年   8篇
  1983年   15篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1979年   10篇
  1978年   7篇
  1977年   7篇
  1970年   3篇
  1969年   3篇
  1967年   4篇
  1965年   3篇
  1963年   3篇
排序方式: 共有708条查询结果,搜索用时 156 毫秒
41.
Bacterial membrane vesicles Cells of all three domains of our life (eukaryotes, bacteria and archaea) produce and segregate membrane vesicles surrounded by a lipid double membrane. Most of them are spherical with a diameter of 20–500 nm and can contain in their interior, the lumen, different types of molecules called cargo. In most cases they contain different proteins, polysaccharides and metabolites and sometimes nucleic acids (DNA, RNA) as well as misfolded proteins. Membrane vesicles play an important role in the horizontal gene transfer and in pathogenesis. Furthermore, it has been shown quite recently that membrane vesicles can transfer phage receptors to phage resistant cells and even closely related species. Worldwide several companies investigate their application as vaccines. In addition, investigations are going on to find out whether membrane vesicles can be used in genomic engineering.  相似文献   
42.
CEA cell adhesion molecule 1 (CEACAM1), a type 1 transmembrane and homotypic cell adhesion protein belonging to the carcinoembryonic antigen (CEA) gene family and expressed on epithelial cells, is alternatively spliced to produce four major isoforms with three or four Ig-like ectodomains and either long (CEACAM1-L) or short (CEACAM1-S) cytoplasmic domains. When murine MC38 (methylcholanthrene-induced adenocarcinoma 38) cells were transfected with human CEACAM1-L and stimulated with sodium pervanadate, actin was found to co-localize with CEACAM1-L at cell-cell boundaries but not in untreated cells. When CEACAM1-L was immunoprecipitated from pervanadate-treated MC38/CEACAM1-L cells and the associated proteins were analyzed by two-dimensional gel analysis and mass spectrometry, actin and tropomyosin, among other proteins, were identified. Whereas a glutathione S-transferase (GST) fusion protein containing the l-isoform (GST-Cyto-L) bound poorly to F-actin in a co-sedimentation assay, the S-isoform fusion protein (GST-Cyto-S) co-sedimented with F-actin, especially when incubated with G-actin during polymerization (K(D) = 7.0 microm). Both GST-Cyto-S and GST-Cyto-L fusion proteins bind G-actin and tropomyosin by surface plasmon resonance studies with binding constants of 0.7 x 10(-8) and 1.0 x 10(-7) m for GST-Cyto-L to G-actin and tropomyosin, respectively, and 3.1 x 10(-8) and 1.3 x 10(-7) m for GST-Cyto-S to G-actin and tropomyosin, respectively. Calmodulin or EDTA inhibited binding of the GST-Cyto-L fusion protein to G-actin, whereas calmodulin and G-actin, but not EDTA, stimulated binding to tropomyosin. A biotinylated 14-amino acid peptide derived from the juxtamembrane portion of the cytoplasmic domain of CEACAM1-L associated with both G-actin and tropomyosin with K(D) values of 1.3 x 10(-5) and 1.8 x 10(-5) m, respectively. These studies demonstrate the direct interaction of CEACAM1 isoforms with G-actin and tropomyosin and the direct interaction of CEACAM1-S with F-actin.  相似文献   
43.
Transport and metabolization of iron bound to the fungal siderophore rhizoferrin was analyzed by transport kinetics, Mössbauer and EPR spectroscopy. Saturation kinetics (v max=24.4 pmol/(mg min), K m=64.4M) and energy dependence excluded diffusion and provided evidence for a rhizoferrin transport system in M. smegmatis. Based on the spectroscopic techniques indications for intracellular presence of the ferric rhizoferrin complex were found. This feature could be of practical importance in the search of novel drugs for the treatment of mycobacterial infections. EPR and Mössbauer spectroscopy revealed different ferritin mineral cores depending on the siderophore iron source. This finding was interpreted in terms of different protein shells, i.e. two types of ferritins.  相似文献   
44.
The highly conserved DnaK chaperones consist of an N-terminal ATPase domain, a central substrate-binding domain, and a C-terminal domain whose function is not known. Since Bacillus subtilis dnaK was not able to complement an Escherichia coli dnaK null mutant, we performed domain element swap experiments to identify the regions responsible for this finding. It turned out that the B. subtilis DnaK protein needed approximately normal amounts of the cochaperone DnaJ to be functional in E. coli. The ATPase domain and the substrate-binding domain form a species-specific functional unit, while the C-terminal domains, although less conserved, are exchangeable. Deletion of the C-terminal domain in E. coli DnaK affected neither complementation of growth at high temperatures nor propagation of phage lambda but abolished degradation of sigma32.  相似文献   
45.
46.
The Bacillus subtilis sigma(W) regulon is induced by different stresses such as alkaline shock, salt shock, phage infection and certain antibiotics that affect cell wall biosynthesis. The activity of the alternative, extracytoplasmic function (ECF) sigma factor sigma(W) is modulated by a specific anti-sigma factor (RsiW or YbbM) encoded by the rsiW (ybbM) gene located immediately downstream of sigW. The RsiW membrane topology was determined, and a specific reporter system for RsiW function was constructed. Experiments using the yeast two-hybrid system suggested a direct interaction of sigma(W) with the cytoplasmic part of RsiW. Analysis of truncated forms of the RsiW protein revealed that sigma(W) induction by alkaline shock is dependent on both the transmembrane and the extracytoplasmic domain of RsiW. Western blot and pulse-chase experiments demonstrated degradation of RsiW after an alkaline shock. A B. subtilis mutant strain deleted for the Escherichia coli yaeL orthologue yluC, encoding a transmembrane protease, was defective in inducing a sigma(W)-controlled promoter after alkaline shock and accumulated a membrane-bound truncated form of RsiW, suggesting that the activity of sigma(W) is controlled by the proteolysis of RsiW by at least two different proteolytic steps.  相似文献   
47.
48.
In the presented study the influence of dehulling rapeseed on the composition of rapeseed meal (RM) and rapeseed cake (RC) and on its feed value for piglets and growing-finishing pigs was investigated. Before withdrawal of oil, rapeseed (variety Express) was dehulled applying a procedure developed by SKET GmbH Magdeburg and the Section Food-Technology of the University Essen. The steps of the dehulling procedure were described. For RM the oil was removed by the prepress-solvent procedure till a crude fat content of 2.1% in DM. RC was produced by pressing only resulting approximately 13% crude fat in DM. The RM and RC from not dehulled (ND) and dehulled (D) rapeseed were examined analytically. Crude nutrients, sugar and fibre substances, amino acids, some minerals and trace elements, fatty acids, glucosinolates and sinapine, and phytate were determined. By dehulling the seed the crude fibre content was decreased in RM and RC by approximately 40%. The ADF content declined by 35 and 39%, and the NDF content by 28% and 40% in RM and RC, respectively. The decrease in ADL content amounted to 50% and 65% for RM and RC, respectively. On the other hand, the CP content of RM and RC was increased by 7% and 13%, respectively, by dehulling the seed while the amino acid content of rape protein increased only slightly. The contents of glucosinolates and sinapine were also increased by dehulling, while the contents of phytate and phytate P were decreased. In digestibility and balance experiments with piglets and intact hybrid breeds of growing-finishing pigs, the digestibility of organic matter and of crude nutrients and the contents of digestible energy and metabolizable energy were estimated. Furthermore, the precaecal digestibility of crude nutrients and amino acids was determined with fistulated mini-pigs. By dehulling the seeds the digestibility of organic matter from RM and RC was improved in piglets and adult pigs by approximately 10%, and the ME contents increased by 13-15%. The precaecal digestibility of the sum of amino acids was increased by approximately 3 and 6 units in RM and RC, respectively. The precaecal digestibility of lysine in RM and RC reached that of soybean oil meal from not dehulled beans.  相似文献   
49.
The epithelial cell adhesion molecule CEACAM1 (carcinoembryonic antigen cell adhesion molecule-1) is down-regulated in colon, prostate, breast, and liver cancer. Here we show that CEACAM1-4S, a splice form with four Ig-like ectodomains and a short cytoplasmic domain (14 amino acids), directly associates with annexin II, a lipid raft-associated molecule, which is also down-regulated in many cancers. Annexin II was identified using a glutathione S-transferase pull-down assay in which the cytoplasmic domain of CEACAM-4S was fused to glutathione S-transferase, the fusion protein was incubated with cell lysates, and isolated proteins were sequenced by mass spectrometry. The interaction was confirmed first by reciprocal immunoprecipitations using anti-CEACAM1 and anti-annexin II antibodies and second by confocal laser microscopy showing co-localization of CEACAM1 with annexin II in mammary epithelial cells grown in Matrigel. In addition, CEACAM1 co-localized with p11, a component of the tetrameric AIIt complex at the plasma membrane, and with annexin II in secretory vesicles. Immobilized, oriented peptides from the cytoplasmic domain of CEACAM1-4S were shown to directly associate with bovine AIIt, which is 98% homologous to human AIIt, with average KD values of about 30 nM using surface plasmon resonance, demonstrating direct binding of functionally relevant AIIt to the cytoplasmic domain of CEACAM1-4S.  相似文献   
50.
Young RC  Schumann R  Zhang P 《Cell calcium》2001,29(3):183-189
The plasma membrane contains the key elements for the control of coupling excitation to contraction in smooth muscle. The superficial calcium buffer barrier, initially proposed by van Breemen for vascular smooth muscle, may participate in the regulation of calcium entry in other smooth muscle types. To investigate the relationship between the sarcoplasmic reticulum (SR) and the plasma membrane in myometrial smooth muscle cells, we performed experiments using videofluorescence imaging and cell-attached electrophysiology. The cell-attached patch was used as a reporter for the free calcium in the subplasmalemmal space by monitoring openings of the Maxi-K channel. Calcium green-1 was used to simultaneously monitor changes of the deep cytosolic calcium concentrations. The cell with the patch attached was stimulated via an intercellular calcium wave from an adjacent cell. In this fashion, release of SR calcium was accomplished with minimal disturbance of the plasma membrane and the subplasmalemmal space of the cell studied. With physiological bathing solution, six of seven calcium waves activated Maxi-K channels. Surprisingly, the Maxi-K channels began opening 6.3 +/- 4.7s (range 2.6-15.0s) after the wave passed the pipette location. When plasma membrane calcium fluxes were inhibited with 100 microM lanthanum, no Maxi-K channel openings were observed in six of seven experiments. These results are best explained by a subplasmalemmal space in which the calcium concentration is largely controlled by store-operated channels. These results suggest the superficial buffer barrier as merely one aspect of subplasmalemmal regulation of calcium dynamics, and emphasize the importance of store-operated calcium channels during dynamic calcium changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号