首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1076篇
  免费   85篇
  1161篇
  2021年   11篇
  2020年   8篇
  2019年   7篇
  2018年   12篇
  2017年   13篇
  2016年   23篇
  2015年   30篇
  2014年   32篇
  2013年   50篇
  2012年   60篇
  2011年   49篇
  2010年   36篇
  2009年   37篇
  2008年   71篇
  2007年   57篇
  2006年   63篇
  2005年   48篇
  2004年   46篇
  2003年   31篇
  2002年   39篇
  2001年   39篇
  2000年   37篇
  1999年   31篇
  1998年   14篇
  1997年   21篇
  1996年   7篇
  1995年   15篇
  1994年   5篇
  1993年   5篇
  1992年   19篇
  1991年   17篇
  1990年   12篇
  1989年   16篇
  1988年   14篇
  1987年   10篇
  1986年   10篇
  1985年   10篇
  1984年   11篇
  1983年   11篇
  1982年   8篇
  1979年   9篇
  1978年   10篇
  1976年   5篇
  1975年   4篇
  1974年   11篇
  1973年   8篇
  1972年   10篇
  1971年   10篇
  1970年   4篇
  1965年   5篇
排序方式: 共有1161条查询结果,搜索用时 15 毫秒
151.
152.
Bacterial populations produce antibiotic-tolerant persister cells. A number of recent studies point to the involvement of toxin/antitoxin (TA) modules in persister formation. hipBA is a type II TA module that codes for the HipB antitoxin and the HipA toxin. HipA is an EF-Tu kinase, which causes protein synthesis inhibition and dormancy upon phosphorylation of its substrate. Antitoxins are labile proteins that are degraded by one of the cytosolic ATP-dependent proteases. We followed the rate of HipB degradation in different protease deficient strains and found that HipB was stabilized in a lon(-) background. These findings were confirmed in an in vitro degradation assay, showing that Lon is the main protease responsible for HipB proteolysis. Moreover, we demonstrated that degradation of HipB is dependent on the presence of an unstructured carboxy-terminal stretch of HipB that encompasses the last 16 amino acid residues. Further, substitution of the conserved carboxy-terminal tryptophan of HipB to alanine or even the complete removal of this 16 residue fragment did not alter the affinity of HipB for hipBA operator DNA or for HipA indicating that the major role of this region of HipB is to control HipB degradation and hence HipA-mediated persistence.  相似文献   
153.
154.
The quantitative analysis of signaling networks requires highly sensitive methods for the time-resolved determination of protein phosphorylation. For this reason, we developed a quantitative protein microarray that monitors the activation of multiple signaling pathways in parallel, and at high temporal resolution. A label-free sandwich approach was combined with near infrared detection, thus permitting the accurate quantification of low-level phosphoproteins in limited biological samples corresponding to less than 50,000 cells, and with a very low standard deviation of approximately 5%. The identification of suitable antibody pairs was facilitated by determining their accuracy and dynamic range using our customized software package Quantpro. Thus, we are providing an important tool to generate quantitative data for systems biology approaches, and to drive innovative diagnostic applications.  相似文献   
155.
Higher eukaryotes have developed a mechanism of sequence-specific RNA degradation which is known as RNA silencing. In plants and some animals, similar to the nematode Caenorhabditis elegans, RNA silencing is a non-cell-autonomous event. Hence, silencing initiation in one or a few cells leads progressively to the sequence-specific suppression of homologous sequences in neighbouring cells in an RNA-mediated fashion. Spreading of silencing in plants occurs through plasmodesmata and results from a cell-to-cell movement of a short-range silencing signal, most probably 21-nt siRNAs (short interfering RNAs) that are produced by one of the plant Dicer enzymes. In addition, silencing spreads systemically through the phloem system of the plants, which also translocates metabolites from source to sink tissues. Unlike the short-range silencing signal, there is little known about the mediators of systemic silencing. Recent studies have revealed various and sometimes surprising genetic elements of the short-range silencing spread pathway, elucidating several aspects of the processes involved. In this review we attempt to clarify commonalities and differences between the individual silencing pathways of RNA silencing spread in plants.  相似文献   
156.
The effects of the mononuclear chloro[meso-1,2-bis(4-fluorophenyl)ethylenediamine][hexylamine]platinum(II) chloride HACl and the dinuclear di[meso-1,2-bis(4-fluorophenyl)ethylenediamine]dichloro(mu-1,n-diaminoalkane-N:N')diplatinum(II)dichloride complexes DAHCl (alkane:hexane), DANCl (alkane:nonane) and DADCl (alkane:dodecane) with different alkyl chain length (n) were investigated on non-Hodgkin's lymphoma (NHL) and chronic myeloid leukemia (CML) cell lines. All compounds showed an antiproliferative effect on the NHL cell lines RAJI and U-937 accompanied in the case of DANCl, DAHCl, HACl and cisplatin by an increase in apoptosis. The growth of another NHL (JEKO-1) and one CML cell line (K-562) was decreased only by cisplatin. In contrast to HACl, DAHCl, DANCl and cisplatin, DADCl induced necrosis, suggesting toxicity because cell viability decreased. Similar effects were observed when bone marrow-derived lymphoma cells from a patient with high-grade B-NHL were incubated with the platinum complexes.  相似文献   
157.
The Staphylococcus aureus multidrug binding protein QacR binds to a broad spectrum of structurally dissimilar cationic, lipophilic drugs. Our previous structural analyses suggested that five QacR glutamic acid residues are critical for charge neutralization and specification of certain drugs. For example, E57 and E58 interact with berberine and with one of the positively charged moieties of the bivalent drug dequalinium. Here we report the structural and biochemical effects of substituting E57 and E58 with alanine and glutamine. Unexpectedly, individual substitutions of these residues did not significantly affect QacR drug binding affinity. Structures of QacR(E57Q) and QacR(E58Q) bound to dequalinium indicated that E57 and E58 are redundant for charge neutralization. The most significant finding was that berberine was reoriented in the QacR multidrug binding pocket so that its positive charge was neutralized by side chain oxygen atoms and aromatic residues. Together, these data emphasize the remarkable versatility of the QacR multidrug binding pocket, illustrating that the capacity of QacR to bind myriad cationic drugs is largely governed by the presence in the pocket of a redundancy of polar, charged, and aromatic residues that are capable of electrostatic neutralization.  相似文献   
158.
Expression of the Staphylococcus aureus plasmid-encoded QacA multidrug transporter is regulated by the divergently encoded QacR repressor protein. To circumvent the formation of disulfide-bonded degradation products, site-directed mutagenesis to replace the two cysteine residues in wild-type QacR was undertaken. Analysis of a resultant cysteineless QacR derivative indicated that it retained full DNA-binding activities in vivo and in vitro and continued to be fully proficient for the mediation of induction of qacA expression in response to a range of structurally dissimilar multidrug transporter substrates. The cysteineless QacR protein was used in cross-linking and dynamic light-scattering experiments to show that its native form was a dimer, whereas gel filtration indicated that four QacR molecules bound per DNA operator site. The addition of inducing compounds led to the dissociation of the four operator-bound QacR molecules from the DNA as dimers. Binding of QacR dimers to DNA was found to be dependent on the correct spacing of the operator half-sites. A revised model proposed for the regulation of qacA expression by QacR features the unusual characteristic of one dimer of the regulatory protein binding to each operator half-site by a process that does not appear to require the prior self-assembly of QacR into tetramers.  相似文献   
159.
The Tyr402His polymorphism of complement factor H (FH) with 20 short complement regulator (SCR) domains is associated with age-related macular degeneration (AMD). How FH contributes to disease pathology is not clear. Both FH and high concentrations of zinc are found in drusen deposits, the key feature of AMD. Heterozygous FH is inhibited by zinc, which causes FH to aggregate. Here, zinc binding to homozygous FH was studied. By analytical ultracentrifugation, large amounts of oligomers were observed with both the native Tyr402 and the AMD-risk His402 homozygous allotypes of FH and both the recombinant SCR-6/8 allotypes with Tyr/His402. X-ray scattering also showed that both FH and SCR-6/8 allotypes strongly aggregated at > 10 μM zinc. The SCR-1/5 and SCR-16/20 fragments were less likely to bind zinc. These observations were supported by bioinformatics predictions. Starting from known zinc binding sites in crystal structures, we predicted 202 putative partial surface zinc binding sites in FH, most of which were in SCR-6. Metal site prediction web servers also suggested that SCR-6 and other domains bind zinc. Predicted SCR-6/8 dimer structures showed that zinc binding sites could be formed at the protein-protein interface that would lead to daisy-chained oligomers. It was concluded that zinc binds weakly to FH at multiple surface locations, most probably within the functionally important SCR-6/8 domains, and this explains why zinc inhibits FH activity. Given the high pathophysiological levels of bioavailable zinc present in subretinal deposits, we discuss how zinc binding to FH may contribute to deposit formation and inflammation associated with AMD.  相似文献   
160.
Adoptive transfer of TCR gene-modified T cells has been proposed as an attractive approach to target tumors for which it is difficult or impossible to induce strong tumor-specific T cell responses by vaccination. Whereas the feasibility of generating tumor Ag-specific T cells by gene transfer has been demonstrated, the factors that determine the in vivo effectiveness of TCR-modified T cells are largely unknown. We have analyzed the value of a number of clinically feasible strategies to enhance the antitumor potential of TCR modified T cells. These experiments reveal three factors that contribute greatly to the in vivo potency of TCR-modified T cells. First, irradiation-induced host conditioning is superior to vaccine-induced activation of genetically modified T cells. Second, increasing TCR expression through genetic optimization of TCR sequences has a profound effect on in vivo antitumor activity. Third, a high precursor frequency of TCR modified T cells within the graft is essential. Tumors that ultimately progress in animals treated with this optimized regimen for TCR-based adoptive cell transfer invariably display a reduced expression of the target Ag. This suggests TCR gene therapy can achieve a sufficiently strong selective pressure to warrant the simultaneous targeting of multiple Ags. The strategies outlined in this study should be of value to enhance the antitumor activity of TCR-modified T cells in clinical trials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号