全文获取类型
收费全文 | 2215篇 |
免费 | 188篇 |
专业分类
2403篇 |
出版年
2022年 | 15篇 |
2021年 | 33篇 |
2020年 | 18篇 |
2019年 | 25篇 |
2018年 | 29篇 |
2017年 | 25篇 |
2016年 | 39篇 |
2015年 | 73篇 |
2014年 | 102篇 |
2013年 | 92篇 |
2012年 | 140篇 |
2011年 | 116篇 |
2010年 | 69篇 |
2009年 | 66篇 |
2008年 | 77篇 |
2007年 | 89篇 |
2006年 | 76篇 |
2005年 | 86篇 |
2004年 | 76篇 |
2003年 | 67篇 |
2002年 | 66篇 |
2001年 | 62篇 |
2000年 | 81篇 |
1999年 | 52篇 |
1998年 | 29篇 |
1997年 | 24篇 |
1996年 | 22篇 |
1995年 | 30篇 |
1994年 | 24篇 |
1993年 | 18篇 |
1992年 | 39篇 |
1991年 | 51篇 |
1990年 | 51篇 |
1989年 | 53篇 |
1988年 | 37篇 |
1987年 | 34篇 |
1986年 | 35篇 |
1985年 | 36篇 |
1984年 | 31篇 |
1983年 | 18篇 |
1980年 | 16篇 |
1979年 | 18篇 |
1978年 | 15篇 |
1977年 | 19篇 |
1976年 | 18篇 |
1975年 | 19篇 |
1974年 | 19篇 |
1973年 | 15篇 |
1971年 | 16篇 |
1969年 | 16篇 |
排序方式: 共有2403条查询结果,搜索用时 15 毫秒
101.
Aurélien Bailly Bangjun Wang Marta Zwiewka Stephan Pollmann Daniel Schenck Hartwig Lüthen Alexander Schulz Jiri Friml Markus Geisler 《The Plant journal : for cell and molecular biology》2014,77(1):108-118
Plant growth is achieved predominantly by cellular elongation, which is thought to be controlled on several levels by apoplastic auxin. Auxin export into the apoplast is achieved by plasma membrane efflux catalysts of the PIN‐FORMED (PIN) and ATP‐binding cassette protein subfamily B/phosphor‐glycoprotein (ABCB/PGP) classes; the latter were shown to depend on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Here by using a transgenic approach in combination with phenotypical, biochemical and cell biological analyses we demonstrate the importance of a putative C‐terminal in‐plane membrane anchor of TWD1 in the regulation of ABCB‐mediated auxin transport. In contrast with dwarfed twd1 loss‐of‐function alleles, TWD1 gain‐of‐function lines that lack a putative in‐plane membrane anchor (HA–TWD1‐Ct) show hypermorphic plant architecture, characterized by enhanced stem length and leaf surface but reduced shoot branching. Greater hypocotyl length is the result of enhanced cell elongation that correlates with reduced polar auxin transport capacity for HA–TWD1‐Ct. As a consequence, HA–TWD1‐Ct displays higher hypocotyl auxin accumulation, which is shown to result in elevated auxin‐induced cell elongation rates. Our data highlight the importance of C‐terminal membrane anchoring for TWD1 action, which is required for specific regulation of ABCB‐mediated auxin transport. These data support a model in which TWD1 controls lateral ABCB1‐mediated export into the apoplast, which is required for auxin‐mediated cell elongation. 相似文献
102.
Glycosylation of methyl (allyl 7,8-O-carbonyl-3-deoxy-alpha-D-manno-2-octulo-pyranosid)o nate with an alpha-(2----4) linked per-O-acetylated KDO-disaccharide bromide derivative under Helferich conditions afforded a 2:1 mixture of the alpha- and beta-linked trisaccharide derivatives in 50% yield. Removal of the protecting groups gave sodium O-[sodium (3-deoxy-alpha-D-manno-2-octulopyranosyl)onate]-(2----4)-O-[ sodium (3-deoxy-alpha- and -beta-D-manno-2-octulopyranosyl)onate]-(2----4)-sodium (allyl 3-deoxy-alpha-D-manno-2-octulopyranosid)onate. Radical copolymerization of the allyl glycosides afforded artificial antigens, suitable for defining antibody specificities directed against the KDO-region of enterobacterial lipopolysaccharides. 相似文献
103.
Matthias Oelze Swenja Kr?ller-Sch?n Philipp Welschof Thomas Jansen Michael Hausding Yuliya Mikhed Paul Stamm Michael Mader Elena Zin?ius Saule Agdauletova Anna Gottschlich Sebastian Steven Eberhard Schulz Serge P. Bottari Eric Mayoux Thomas Münzel Andreas Daiber 《PloS one》2014,9(11)
Objective
In diabetes, vascular dysfunction is characterized by impaired endothelial function due to increased oxidative stress. Empagliflozin, as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), offers a novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with empagliflozin improves endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated vascular oxidative stress.Methods
Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection empagliflozin (10 and 30 mg/kg/d) was administered via drinking water for 7 weeks. Vascular function was assessed by isometric tension recording, oxidative stress parameters by chemiluminescence and fluorescence techniques, protein expression by Western blot, mRNA expression by RT-PCR, and islet function by insulin ELISA in serum and immunohistochemical staining of pancreatic tissue. Advanced glycation end products (AGE) signaling was assessed by dot blot analysis and mRNA expression of the AGE-receptor (RAGE).Results
Treatment with empagliflozin reduced blood glucose levels, normalized endothelial function (aortic rings) and reduced oxidative stress in aortic vessels (dihydroethidium staining) and in blood (phorbol ester/zymosan A-stimulated chemiluminescence) of diabetic rats. Additionally, the pro-inflammatory phenotype and glucotoxicity (AGE/RAGE signaling) in diabetic animals was reversed by SGLT2i therapy.Conclusions
Empagliflozin improves hyperglycemia and prevents the development of endothelial dysfunction, reduces oxidative stress and improves the metabolic situation in type 1 diabetic rats. These preclinical observations illustrate the therapeutic potential of this new class of antidiabetic drugs. 相似文献104.
105.
106.
Florian G?rtner Thorsten Seidel Uwe Schulz Jan Gummert Hendrik Milting 《The Journal of biological chemistry》2013,288(45):32138-32148
Endothelin receptor A (ETA), a G protein-coupled receptor, mediates endothelin signaling, which is regulated by GRK2. Three Ser and seven Thr residues recently proven to be phosphoacceptor sites are located in the C-terminal extremity (CTE) of the receptor following its palmitoylation site. We created various phosphorylation-deficient ETA mutants. The phospholipase C activity of mutant receptors in HEK-293 cells was analyzed during continuous endothelin stimulation to investigate the impact of phosphorylation sites on ETA desensitization. Total deletion of phosphoacceptor sites in the CTE affected proper receptor regulation. However, proximal and distal phosphoacceptor sites both turned out to be sufficient to induce WT-like desensitization. Overexpression of the Gαq coupling-deficient mutant GRK2-D110A suppressed ETA-WT signaling but failed to decrease phospholipase C activity mediated by the phosphorylation-deficient mutant ETA-6PD. In contrast, GRK2-WT acted on both receptors, whereas the kinase-inactive mutant GRK2-D110A/K220R failed to inhibit signaling of ETA-WT and ETA-6PD. This demonstrates that ETA desensitization involves at least two autonomous GRK2-mediated components: 1) a phosphorylation-independent signal decrease mediated by blocking of Gαq and 2) a mechanism involving phosphorylation of Ser and Thr residues in the CTE of the receptor in a redundant fashion, able to incorporate either proximal or distal phosphoacceptor sites. High level transfection of GRK2 variants influenced signaling of ETA-WT and ETA-6PD and hints at an additional phosphorylation-independent regulatory mechanism. Furthermore, internalization of mRuby-tagged receptors was observed with ETA-WT and the phosphorylation-deficient mutant ETA-14PD (lacking 14 phosphoacceptor sites) and turned out to be based on a phosphorylation-independent mechanism. 相似文献
107.
K Bartsch R Dichmann P Schmitt E Uhlmann A Schulz 《Applied and environmental microbiology》1990,56(1):7-12
We have cloned the gene encoding a 43-kilodalton transaminase from Escherichia coli K-12 with a specificity for L-phosphinothricin [L-homoalanine-4-yl-(methyl)phosphinic acid], the active ingredient of the herbicide Basta (Hoechst AG). The structural gene was isolated, together with its own promoter, and shown to be localized on a 1.6-kilobase DraI-BamHI fragment. The gene is subject to catabolite repression by glucose; however, repression could be relieved completely when 4-aminobutyrate (GABA) served as the sole nitrogen source. The regulation pattern obtained and a comparison of the restriction map of the initially cloned 15-kilobase SalI fragment with the physical map of the E. coli K-12 genome suggest that the cloned gene is identical with gabT, a locus on the gab gene cluster of E. coli K-12 which codes for the GABA:2-ketoglutartate transaminase (EC 2.6.1.19). A number of expression plasmids carrying the isolated transaminase gene were constructed. With these constructs, the transaminase expression in transformants of E. coli could be increased up to 80-fold compared with that in a wild-type control, and the transaminase constituted up to 20% of the total soluble protein of the bacteria. Thus, the protein crude extracts of the transformants could be used, after a simple heat precipitation step, for the biotechnological production of L-phosphinothricin in an enzyme reactor. 相似文献
108.
Bunk B Schulz A Stammen S Münch R Warren MJ Rohde M Jahn D Biedendieck R 《Bioengineered bugs》2010,1(2):85-91
Bacillus megaterium, the "big beast," is a Gram-positive bacterium with a size of 4 × 1.5 μm. During the last years, it became more and more popular in the field of biotechnology for its recombinant protein production capacity. For the purpose of intra- as well as extracellular protein synthesis several vectors were constructed and commercialized (MoBiTec GmbH, Germany). On the basis of two compatible vectors, a T7 RNA polymerase driven protein production system was established. Vectors for chromosomal integration enable the direct manipulation of the genome. The vitamin B(12) biosynthesis of B. megaterium served as a model for the systematic development of a production strain using these tools. For this purpose, the overexpression of chromosomal and plasmid encoded genes and operons, the synthesis of anti-sense RNA for gene silencing, the removal of inhibitory regulatory elements in combination with the utilization of strong promoters, directed protein design, and the recombinant production of B(12) binding proteins to overcome feedback inhibition were successfully employed. For further system biotechnology based optimization strategies the genome sequence will provide a closer look into genomic capacities of B. megaterium. DNA arrays are available. Proteome, fluxome and metabolome analyses are possible. All data can be integrated by using a novel bioinformatics platform. Finally, the size of the "big beast" B. megaterium invites for cell biology research projects. All these features provide a solid basis for challenging biotechnological approaches. 相似文献
109.
Background
The cyclin-dependent kinase inhibitor p27 is a putative tumor suppressor that is downregulated in the majority of human prostate cancers. The mechanism of p27 down-regulation in prostate cancers in unknown, but presumably involves increased proteolysis mediated by the SCFSKP2 ubiquitin ligase complex. Here we used the human prostate cancer cell line LNCaP, which undergoes G1 cell cycle arrest in response to androgen, to examine the role of the SKP2 F-box protein in p27 regulation in prostate cancer.Results
We show that androgen-induced G1 cell cycle arrest of LNCaP cells coincides with inhibition of cyclin-dependent kinase 2 activity and p27 accumulation caused by reduced p27 ubiquitylation activity. At the same time, androgen decreased expression of SKP2, but did not affect other components of SCFSKP2. Adenovirus-mediated overexpression of SKP2 led to ectopic down-regulation of p27 in asynchronous cells. Furthermore, SKP2 overexpression was sufficient to overcome p27 accumulation in androgen arrested cells by stimulating cellular p27 ubiquitylation activity. This resulted in transient activation of CDK2 activity, but was insufficient to override the androgen-induced G1 block.Conclusions
Our studies suggest that SKP2 is a major determinant of p27 levels in human prostate cancer cells. Based on our in vitro studies, we suggest that overexpression of SKP2 may be one of the mechanisms that allow prostate cancer cells to escape growth control mediated by p27. Consequently, the SKP2 pathway may be a suitable target for novel prostate cancer therapies. 相似文献110.
Brandes V Schelle I Brinkmann S Schulz F Schwarz J Gerhard R Genth H 《Biological chemistry》2012,393(1-2):77-84
Toxin A (TcdA) and toxin B (TcdB) are the major virulence factors of Clostridium difficile-associated diarrhoea (CDAD). TcdA and TcdB mono-glucosylate small GTPases of the Rho family, thereby causing actin re-organisation in colonocytes, resulting in the loss of colonic barrier function. The hydrophilic bile acid tauroursodeoxycholic acid (TUDCA) is an approved drug for the treatment of cholestasis and biliary cirrhosis. In this study, TUDCA-induced activation of Akt1 is presented to increase cellular levels of pS71-Rac1/Cdc42 in human hepatocarcinoma (HepG2) cells, showing for the first time that bile acid signalling affects the activity of Rho proteins. Rac1/Cdc42 phosphorylation, in turn, protects Rac1/Cdc42 from TcdB-catalysed glucosylation and reduces the TcdB-induced cytopathic effects in HepG2 cells. The results of this study indicate that TUDCA may prove useful as a therapeutic agent for the treatment of CDAD. 相似文献