首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   59篇
  国内免费   1篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2018年   3篇
  2017年   3篇
  2015年   6篇
  2014年   9篇
  2013年   15篇
  2012年   13篇
  2011年   23篇
  2010年   9篇
  2009年   9篇
  2008年   10篇
  2007年   14篇
  2006年   17篇
  2005年   16篇
  2004年   11篇
  2003年   10篇
  2002年   18篇
  2001年   11篇
  2000年   10篇
  1999年   14篇
  1998年   9篇
  1996年   9篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   16篇
  1991年   13篇
  1990年   9篇
  1989年   8篇
  1988年   12篇
  1987年   15篇
  1986年   10篇
  1985年   14篇
  1984年   10篇
  1982年   7篇
  1981年   8篇
  1980年   9篇
  1979年   6篇
  1978年   7篇
  1977年   12篇
  1976年   9篇
  1975年   6篇
  1974年   12篇
  1973年   12篇
  1972年   6篇
  1971年   4篇
  1968年   5篇
  1967年   7篇
排序方式: 共有498条查询结果,搜索用时 140 毫秒
41.
Kalendar R  Lee D  Schulman AH 《Genomics》2011,98(2):137-144
The polymerase chain reaction is fundamental to molecular biology and is the most important practical molecular technique for the research laboratory. We have developed and tested efficient tools for PCR primer and probe design, which also predict oligonucleotide properties based on experimental studies of PCR efficiency. The tools provide comprehensive facilities for designing primers for most PCR applications and their combinations, including standard, multiplex, long-distance, inverse, real-time, unique, group-specific, bisulphite modification assays, Overlap-Extension PCR Multi-Fragment Assembly, as well as a programme to design oligonucleotide sets for long sequence assembly by ligase chain reaction. The in silico PCR primer or probe search includes comprehensive analyses of individual primers and primer pairs. It calculates the melting temperature for standard and degenerate oligonucleotides including LNA and other modifications, provides analyses for a set of primers with prediction of oligonucleotide properties, dimer and G-quadruplex detection, linguistic complexity, and provides a dilution and resuspension calculator.  相似文献   
42.
The protein ubiquitin is an important post-translational modifier that regulates a wide variety of biological processes. In cells, ubiquitin is apportioned among distinct pools, which include a variety of free and conjugated species. Although maintenance of a dynamic and complex equilibrium among ubiquitin pools is crucial for cell survival, the tools necessary to quantify each cellular ubiquitin pool have been limited. We have developed a quantitative mass spectrometry approach to measure cellular concentrations of ubiquitin species using isotope-labeled protein standards and applied it to characterize ubiquitin pools in cells and tissues. Our method is convenient, adaptable and should be a valuable tool to facilitate our understanding of this important signaling molecule.  相似文献   
43.

Background

Severe malaria remains a major cause of global morbidity and mortality. Despite the use of potent anti-parasitic agents, the mortality rate in severe malaria remains high. Adjunctive therapies that target the underlying pathophysiology of severe malaria may further reduce morbidity and mortality. Endothelial activation plays a central role in the pathogenesis of severe malaria, of which angiopoietin-2 (Ang-2) has recently been shown to function as a key regulator. Nitric oxide (NO) is a major inhibitor of Ang-2 release from endothelium and has been shown to decrease endothelial inflammation and reduce the adhesion of parasitized erythrocytes. Low-flow inhaled nitric oxide (iNO) gas is a US FDA-approved treatment for hypoxic respiratory failure in neonates.

Methods/Design

This prospective, parallel arm, randomized, placebo-controlled, blinded clinical trial compares adjunctive continuous inhaled nitric oxide at 80 ppm to placebo (both arms receiving standard anti-malarial therapy), among Ugandan children aged 1-10 years of age with severe malaria. The primary endpoint is the longitudinal change in Ang-2, an objective and quantitative biomarker of malaria severity, which will be analysed using a mixed-effects linear model. Secondary endpoints include mortality, recovery time, parasite clearance and neurocognitive sequelae.

Discussion

Noteworthy aspects of this trial design include its efficient sample size supported by a computer simulation study to evaluate statistical power, meticulous attention to complex ethical issues in a cross-cultural setting, and innovative strategies for safety monitoring and blinding to treatment allocation in a resource-constrained setting in sub-Saharan Africa.

Trial Registration

ClinicalTrials.gov Identifier: NCT01255215  相似文献   
44.

Background

Autism is a neurodevelopmental disorder characterized by impairments in social behavior, communication difficulties and the occurrence of repetitive or stereotyped behaviors. There has been substantial evidence for dysregulation of the immune system in autism.

Methods

We evaluated differences in the number and phenotype of circulating blood cells in young children with autism (n = 70) compared with age-matched controls (n = 35). Children with a confirmed diagnosis of autism (4–6 years of age) were further subdivided into low (IQ<68, n = 35) or high functioning (IQ≥68, n = 35) groups. Age- and gender-matched typically developing children constituted the control group. Six hundred and forty four primary and secondary variables, including cell counts and the abundance of cell surface antigens, were assessed using microvolume laser scanning cytometry.

Results

There were multiple differences in immune cell populations between the autism and control groups. The absolute number of B cells per volume of blood was over 20% higher for children with autism and the absolute number of NK cells was about 40% higher. Neither of these variables showed significant difference between the low and high functioning autism groups. While the absolute number of T cells was not different across groups, a number of cellular activation markers, including HLA-DR and CD26 on T cells, and CD38 on B cells, were significantly higher in the autism group compared to controls.

Conclusions

These results support previous findings that immune dysfunction may occur in some children with autism. Further evaluation of the nature of the dysfunction and how it may play a role in the etiology of autism or in facets of autism neuropathology and/or behavior are needed.  相似文献   
45.
Hunter T  Schulman H 《Cell》2005,123(5):765-767
Crystal structures of protein kinases continue to reveal new mechanisms for the regulation of catalytic activity of these enzymes. In this issue of Cell, Rosenberg et al. (2005) report the structure of the catalytic and regulatory domains of CaMKII, a protein kinase important in the cellular response to changes in intracellular calcium ion concentration. This study provides new mechanistic insights into the workings of this finely tuned molecular machine.  相似文献   
46.
CHIP is a ubiquitin ligase implicated in the degradation of misfolded proteins. In the November 23 issue of Molecular Cell, identified CHIP as a protein that interacts with the ubiquitin E2 complex Ubc13-Uev1A, which catalyzes the synthesis of Lys-63-linked polyubiquitin chains. Although the ubiquitin ligase activity of CHIP requires its dimerization through the U box domain, the crystal structure of the CHIP-E2 complex reveals that the protomers in the CHIP homodimer adopt distinct conformations such that only one U box of CHIP interacts with Ubc13.  相似文献   
47.
During ubiquitin ligation, an E2 conjugating enzyme receives ubiquitin from an E1 enzyme and then interacts with an E3 ligase to modify substrates. Competitive binding experiments with three human E2-E3 protein pairs show that the binding of E1s and of E3s to E2s are mutually exclusive. These results imply that polyubiquitination requires recycling of E2 for addition of successive ubiquitins to substrate.  相似文献   
48.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) acts in diverse cell types by phosphorylating proteins with key calcium-dependent functions such as synaptic plasticity, electrical excitability, and neurotransmitter synthesis. CaMKII displays calcium-dependent binding to proteins in vitro and translocation to synaptic sites after glutamatergic activity in neurons. We therefore hypothesized that subcellular targeting of CaMKII can direct its substrate specificity in an activity-dependent fashion. Here, we examined whether activity-dependent colocalization of CaMKII and its substrates could result in regulation of substrate phosphorylation in cells. We find that substrates localized at cellular membranes required CaMKII translocation to these compartments to achieve effective phosphorylation. Spatial barriers to phosphorylation could be overcome by translocation and anchoring to the substrate itself or to nearby target proteins within the membrane compartment. In contrast, phosphorylation of a cytoplasmic counterpart of the substrate does not require CaMKII translocation or stable protein-protein binding. Cytosolic phosphorylation is more permissive, exhibiting partial calcium-independence. Localization-dependent substrate specificity can also show more graded levels of regulation within signaling microdomains. We find that colocalization of translocated CaMKII and its substrate to lipid rafts in the plasma membrane can modulate the magnitude of phosphorylation. Thus, dynamic regulation of both substrate and kinase localization provides a powerful and nuanced way to regulate CaMKII signal specificity.  相似文献   
49.
Ca2+-dependent facilitation (CDF) of voltage-gated calcium current is a powerful mechanism for up-regulation of Ca2+ influx during repeated membrane depolarization. CDF of L-type Ca2+ channels (Ca(v)1.2) contributes to the positive force-frequency effect in the heart and is believed to involve the activation of Ca2+/calmodulin-dependent kinase II (CaMKII). How CaMKII is activated and what its substrates are have not yet been determined. We show that the pore-forming subunit alpha(1C) (Ca(v)alpha1.2) is a CaMKII substrate and that CaMKII interaction with the COOH terminus of alpha1C is essential for CDF of L-type channels. Ca2+ influx triggers distinct features of CaMKII targeting and activity. After Ca2+-induced targeting to alpha1C, CaMKII becomes tightly tethered to the channel, even after calcium returns to normal levels. In contrast, activity of the tethered CaMKII remains fully Ca2+/CaM dependent, explaining its ability to operate as a calcium spike frequency detector. These findings clarify the molecular basis of CDF and demonstrate a novel enzymatic mechanism by which ion channel gating can be modulated by activity.  相似文献   
50.

Background  

We recently described a mini-intein in the PRP8 gene of a strain of the basidiomycete Cryptococcus neoformans, an important fungal pathogen of humans. This was the second described intein in the nuclear genome of any eukaryote; the first nuclear encoded intein was found in the VMA gene of several saccharomycete yeasts. The evolution of eukaryote inteins is not well understood. In this report we describe additional PRP8 inteins (bringing the total of these to over 20). We compare and contrast the phylogenetic distribution and evolutionary history of the PRP8 intein and the saccharomycete VMA intein, in order to derive a broader understanding of eukaryote intein evolution. It has been suggested that eukaryote inteins undergo horizontal transfer and the present analysis explores this proposal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号