首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1441篇
  免费   152篇
  1593篇
  2022年   12篇
  2021年   20篇
  2020年   11篇
  2019年   15篇
  2018年   21篇
  2017年   16篇
  2016年   28篇
  2015年   40篇
  2014年   40篇
  2013年   55篇
  2012年   75篇
  2011年   88篇
  2010年   50篇
  2009年   39篇
  2008年   66篇
  2007年   68篇
  2006年   64篇
  2005年   68篇
  2004年   59篇
  2003年   67篇
  2002年   61篇
  2001年   54篇
  2000年   49篇
  1999年   36篇
  1998年   26篇
  1997年   15篇
  1996年   11篇
  1995年   25篇
  1994年   12篇
  1993年   13篇
  1992年   24篇
  1991年   20篇
  1990年   13篇
  1989年   14篇
  1988年   13篇
  1987年   13篇
  1986年   11篇
  1985年   17篇
  1983年   20篇
  1982年   16篇
  1981年   12篇
  1979年   12篇
  1977年   15篇
  1975年   17篇
  1974年   12篇
  1970年   16篇
  1969年   25篇
  1968年   11篇
  1967年   15篇
  1965年   11篇
排序方式: 共有1593条查询结果,搜索用时 15 毫秒
51.
Caveolin-1 is the principal structural protein of caveolae membranes in fibroblasts and endothelia. Recently, we have shown that the human CAV-1 gene is localized to a suspected tumor suppressor locus, and mutations in Cav-1 have been implicated in human cancer. Here, we created a caveolin-1 null (CAV-1 -/-) mouse model, using standard homologous recombination techniques, to assess the role of caveolin-1 in caveolae biogenesis, endocytosis, cell proliferation, and endothelial nitric-oxide synthase (eNOS) signaling. Surprisingly, Cav-1 null mice are viable. We show that these mice lack caveolin-1 protein expression and plasmalemmal caveolae. In addition, analysis of cultured fibroblasts from Cav-1 null embryos reveals the following: (i) a loss of caveolin-2 protein expression; (ii) defects in the endocytosis of a known caveolar ligand, i.e. fluorescein isothiocyanate-albumin; and (iii) a hyperproliferative phenotype. Importantly, these phenotypic changes are reversed by recombinant expression of the caveolin-1 cDNA. Furthermore, examination of the lung parenchyma (an endothelial-rich tissue) shows hypercellularity with thickened alveolar septa and an increase in the number of vascular endothelial growth factor receptor (Flk-1)-positive endothelial cells. As predicted, endothelial cells from Cav-1 null mice lack caveolae membranes. Finally, we examined eNOS signaling by measuring the physiological response of aortic rings to various stimuli. Our results indicate that eNOS activity is up-regulated in Cav-1 null animals, and this activity can be blunted by using a specific NOS inhibitor, nitro-l-arginine methyl ester. These findings are in accordance with previous in vitro studies showing that caveolin-1 is an endogenous inhibitor of eNOS. Thus, caveolin-1 expression is required to stabilize the caveolin-2 protein product, to mediate the caveolar endocytosis of specific ligands, to negatively regulate the proliferation of certain cell types, and to provide tonic inhibition of eNOS activity in endothelial cells.  相似文献   
52.
The proapoptotic influenza A virus PB1-F2 protein contributes to viral pathogenicity and is present in most human and avian isolates. Previous synthetic protocols have been improved to provide a synthetic full length H1N1 type PB1-F2 protein that is encoded by the 'Spanish flu' isolate and an equivalent protein from an avian host that is representative of a highly pathogenic H5N1 'bird flu' isolate, termed SF2 and BF2, respectively. Full length SF2, different mutants of BF2 and a number of fragments of these peptides have been synthesized by either the standard solid-phase peptide synthesis method or by native chemical ligation of unprotected N- and C-terminal peptide fragments. For SF2 chemical ligation made use of the histidine and the cysteine residues located in positions 41 and 42 of the native sequence, respectively, to afford a highly efficient synthesis of SF2 compared to the standard SPPS elongation method. By-product formation at the aspartic acid residue in position 23 was prevented by specific modifications of the SPPS protocol. As the native sequence of BF2 does not contain a cysteine residue two different mutants of BF2 (Y42C) and BF2 (S47C) with appropriate cysteine exchanges were produced. In addition to the full length molecules, fragments of the native sequences were synthesized for comparison of their physical characteristics with those from the H1N1 human isolate A/Puerto Rico/8/34 (H1N1). All peptides were analyzed by mass spectrometry, (1)H NMR spectroscopy, and SDS-PAGE. The protocols allow the synthesis of significant amounts of PB1-F2 and its related peptides. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
53.
Summary The anion transport protein of the human erythrocyte membrane, band 3, was solubilized and purified in solutions of the non-ionic detergent Triton X-100. It was incorporated into spherical lipid bilayers by the following procedure: (1) Dry phosphatidylcholine was suspended in the protein solution. Octylglucopyranoside was added until the milky suspension became clear. (2) The sample was dialyzed overnight against detergentfree buffer. (3) Residual Triton X-100 was removed from the opalescent vesicle suspension by sucrose density gradient centrifugation and subsequent dialysis. Sulfate efflux from the vesicles was studied, under exchange conditions, using a filtration method. Three vesicle subpopulations could be distinguished by analyzing the time course of the efflux. One was nearly impermeable to sulfate, and efflux from another was due to leaks. The largest subpopulation, however, showed transport characteristics very similar to those of the anion transport system of the intact erythrocyte membrane: transport numbers (at 30°C) close to 20 sulfate molecules per band 3 and min, an activation energy of approx. 140 kJ/mol, a pH maximum at pH 6.2, saturation of the sulfate flux at sulfate concentrations around 100mm, inhibition of the flux by H2DIDS and flufenamate (approx.K l-values at 30°C: 0.1 and 0.7 m, respectively), and right-side-out orientation of the transport protein (as judged from the inhibition of sulfate efflux by up to 98% by externally added H2DIDS). Thus, the system represents, for the first time, a reconstitution of all the major properties of the sulfate transport across the erythrocyte membrane.  相似文献   
54.
55.
Cobamides (Cbas) are essential cofactors of reductive dehalogenases (RDases) in organohalide-respiring bacteria (OHRB). Changes in the Cba structure can influence RDase function. Here, we report on the cofactor versatility or selectivity of Desulfitobacterium RDases produced either in the native organism or heterologously. The susceptibility of Desulfitobacterium hafniense strain DCB-2 to guided Cba biosynthesis (i.e. incorporation of exogenous Cba lower ligand base precursors) was analysed. Exogenous benzimidazoles, azabenzimidazoles and 4,5-dimethylimidazole were incorporated by the organism into Cbas. When the type of Cba changed, no effect on the turnover rate of the 3-chloro-4-hydroxy-phenylacetate-converting enzyme RdhA6 and the 3,5-dichlorophenol-dehalogenating enzyme RdhA3 was observed. The impact of the amendment of Cba lower ligand precursors on RDase function was also investigated in Shimwellia blattae, the Cba producer used for the heterologous production of Desulfitobacterium RDases. The recombinant tetrachloroethene RDase (PceAY51) appeared to be non-selective towards different Cbas. However, the functional production of the 1,2-dichloroethane-dihaloeliminating enzyme (DcaA) of Desulfitobacterium dichloroeliminans was completely prevented in cells producing 5,6-dimethylbenzimidazolyl-Cba, but substantially enhanced in cells that incorporated 5-methoxybenzimidazole into the Cba cofactor. The results of the study indicate the utilization of a range of different Cbas by Desulfitobacterium RDases with selected representatives apparently preferring distinct Cbas.  相似文献   
56.
Summary The evolutionary origin of vertebrate hindbrain segmentation is unclear since the amphioxus, the closest living invertebrate relative to the vertebrates, possesses a hindbrain homolog that displays no gross morphological segmentation. Three of the estrogen-receptor related (ERR) receptors are segmentally expressed in the zebrafish hindbrain, suggesting that their common ancestor was expressed in a similar, reiterated manner. We have also cloned and determined the developmental expression of the single homolog of the vertebrate ERR genes in the amphioxus (AmphiERR). This gene is also expressed in a segmented manner in a region considered homologous to the vertebrate hindbrain. In contrast to the expression of amphioxus islet (a LIM-homeobox gene that also labels motoneurons), AmphiERR expression persists longer in the hindbrain homolog and does not later extend to additional posterior cells. In addition, AmphiERR and one of its vertebrate homologs (ERRalpha) are expressed in the developing somitic musculature of amphioxus and zebrafish, respectively. Altogether, our results are consistent with fine structural evidence suggesting that the amphioxus hindbrain is segmented, and indicate that chordate ERR gene expression is a marker for both hindbrain and muscle segmentation. Furthermore, our data support an evolution model of chordate brain segmentation: originally, the program for anterior segmentation in the protochordate ancestors of the vertebrates resided in the developing axial mesoderm which imposed reiterated patterning on the adjacent neural tube; during early vertebrate evolution, this segmentation program was transferred to and controlled by the neural tube.  相似文献   
57.
The interrupted suture technique is most commonly used for microsurgical vascular anastomosis. For several reasons (e.g., exposure of suture material to blood, time needed), many attempts have been made to find other solutions. This article describes a new means of performing a microsurgical vascular anastomosis. The aim of this study was to show the feasibility and possible advantages of this new technique. The basic components at work here are a modified cuff and electrically generated heat used to unite the vessel walls. In this way, both endothelial layers are adapted without manipulating the inside of the vessel or leaving behind foreign matter. Various energy/coagulation time settings were used to perform arterial anastomoses (n = 42) in an isogeneic abdominal aorta interposition model in the rat. The quality of anastomosis was evaluated at days 1, 10, 21, and 120. Immediately after the welding process all anastomoses (n = 42) were patent. No stenosis was found at any observation time. Anastomosis time ranged from 3 to 18 minutes (average, 11 minutes). This new technique permits a vascular anastomosis to be performed easily and reliably with a high patency rate. With this technique, the authors are convinced that a skilled surgeon can create a high-quality anastomosis in a fraction of the time needed to sew an anastomosis.  相似文献   
58.
The Arabidopsis KRYPTONITE gene encodes a member of the Su(var)3-9 family of histone methyltransferases. Mutations of kryptonite cause a reduction of methylated histone H3 lysine 9, a loss of DNA methylation, and reduced gene silencing. Lysine residues of histones can be either monomethylated, dimethylated or trimethylated and recent evidence suggests that different methylation states are found in different chromatin domains. Here we show that bulk Arabidopsis histones contain high levels of monomethylated and dimethylated, but not trimethylated histone H3 lysine 9. Using both immunostaining of nuclei and chromatin immunoprecipitation assays, we show that monomethyl and dimethyl histone H3 lysine 9 are concentrated in heterochromatin. In kryptonite mutants, dimethyl histone H3 lysine 9 is nearly completely lost, but monomethyl histone H3 lysine 9 levels are only slightly reduced. Recombinant KRYPTONITE can add one or two, but not three, methyl groups to the lysine 9 position of histone H3. Further, we identify a KRYPTONITE-related protein, SUVH6, which displays histone H3 lysine 9 methylation activity with a spectrum similar to that of KRYPTONITE. Our results suggest that multiple Su(var)3-9 family members are active in Arabidopsis and that dimethylation of histone H3 lysine 9 is the critical mark for gene silencing and DNA methylation.  相似文献   
59.
60.
H L Schubert  E Raux  K S Wilson  M J Warren 《Biochemistry》1999,38(33):10660-10669
Prosthetic groups such as heme, chlorophyll, and cobalamin (vitamin B(12)) are characterized by their branched biosynthetic pathway and unique metal insertion steps. The metal ion chelatases can be broadly classed either as single-subunit ATP-independent enzymes, such as the anaerobic cobalt chelatase and the protoporphyrin IX (PPIX) ferrochelatase, or as heterotrimeric, ATP-dependent enzymes, such as the Mg chelatase involved in chlorophyll biosynthesis. The X-ray structure of the anaerobic cobalt chelatase from Salmonella typhimurium, CbiK, has been solved to 2.4 A resolution. Despite a lack of significant amino acid sequence similarity, the protein structure is homologous to that of Bacillus subtilis PPIX ferrochelatase. Both enzymes contain a histidine residue previously identified as the metal ion ligand, but CbiK contains a second histidine in place of the glutamic acid residue identified as a general base in PPIX ferrochelatase. Site-directed mutagenesis has confirmed a role for this histidine and a nearby glutamic acid in cobalt binding, modulating metal ion specificity as well as catalytic efficiency. Contrary to the predicted protoporphyrin binding site in PPIX ferrochelatase, the precorrin-2 binding site in CbiK is clearly defined within a large horizontal cleft between the N- and C-terminal domains. The structural similarity has implications for the understanding of the evolution of this branched biosynthetic pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号