首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1592篇
  免费   220篇
  2022年   14篇
  2021年   23篇
  2019年   14篇
  2018年   19篇
  2017年   22篇
  2016年   30篇
  2015年   45篇
  2014年   44篇
  2013年   90篇
  2012年   95篇
  2011年   93篇
  2010年   64篇
  2009年   42篇
  2008年   64篇
  2007年   78篇
  2006年   86篇
  2005年   60篇
  2004年   52篇
  2003年   55篇
  2002年   64篇
  2001年   58篇
  2000年   50篇
  1999年   43篇
  1998年   21篇
  1997年   24篇
  1996年   24篇
  1995年   16篇
  1994年   16篇
  1993年   19篇
  1992年   31篇
  1991年   29篇
  1990年   25篇
  1989年   25篇
  1988年   29篇
  1987年   20篇
  1986年   14篇
  1985年   18篇
  1984年   23篇
  1982年   25篇
  1980年   15篇
  1979年   16篇
  1978年   15篇
  1977年   21篇
  1976年   12篇
  1975年   13篇
  1974年   16篇
  1973年   18篇
  1972年   15篇
  1970年   14篇
  1967年   12篇
排序方式: 共有1812条查询结果,搜索用时 15 毫秒
111.
Although sterol carrier protein-2 (SCP-2) binds, transfers, and/or enhances the metabolism of many membrane lipid species (fatty acids, cholesterol, phospholipids), it is not known if SCP-2 expression actually alters the membrane distribution of lipids in living cells or tissues. As shown herein for the first time, expression of SCP-2 in transfected L-cell fibroblasts reduced the plasma membrane levels of lipid species known to traffic through the HDL-receptor-mediated efflux pathway: cholesterol, cholesteryl esters, and phospholipids. While the ratio of cholesterol/phospholipid in plasma membranes of intact cells was not changed by SCP-2 expression, phosphatidylinositol, a molecule important to intracellular signaling and vesicular trafficking, and anionic phospholipids were selectively retained. Only modest alterations in plasma membrane phospholipid percent fatty acid composition but no overall change in the proportion of saturated, unsaturated, monounsaturated, or polyunsaturated fatty acids were observed. The reduced plasma membrane content of cholesterol was not due to SCP-2 inhibition of sterol transfer from the lysosomes to the plasma membranes. SCP-2 dramatically enhanced sterol transfer from isolated lysosomal membranes to plasma membranes by eliciting detectable sterol transfer within 30 s, decreasing the t(1/2) for sterol transfer 364-fold from >4 days to 7-15 min, and inducing formation of rapidly transferable sterol domains. In summary, data obtained with intact transfected cells and in vitro sterol transfer assays showed that SCP-2 expression (i) selectively modulated plasma membrane lipid composition and (ii) decreased the plasma membrane content cholesterol, an effect potentially due to more rapid SCP-2-mediated cholesterol transfer from versus to the plasma membrane.  相似文献   
112.
The viral ion channel protein M2 supports the transit of influenza virus and its glycoproteins through acidic compartments of the cell. M2 conducts endosomal protons into the virion to initiate uncoating and, by equilibrating the pH at trans-Golgi membranes, preserves the native conformation of acid-sensitive viral hemagglutinin. The exceptionally low conductance of the M2 channel thwarted resolution of single channels by electrophysiological techniques. Assays of liposome-reconstituted M2 yielded the average unitary channel current of the M2 tetramer--1.2 aA (1.2 x 10(-18) A) at neutral pH and 2.7 to 4.1 aA at pH 5.7--which activates the channel. Extrapolation to physiological temperature predicts 4.8 and 40 aA, respectively, and a unitary conductance of 0.03 versus 0.4 fS. This minute activity, below previous estimates, appears sufficient for virus reproduction, but low enough to avert abortive cytotoxicity. The unitary permeability of M2 was within the range reported for other proton channels. To address the ion selectivity of M2, we exploited the coupling of ionic influx and efflux in sealed liposomes. Metal ion fluxes were monitored by proton counterflow, employing a pH probe 1,000 times more sensitive than available Na+ or K+ probes. Even low-pH-activated M2 did not conduct Na+ and K+. The proton selectivity of M2 was estimated to be at least 3 x 10(6) (over sodium or potassium ions), in agreement with electrophysiological studies. The stringent proton selectivity of M2 suggests that the cytopathology of influenza virus does not involve direct perturbation of cellular sodium or potassium gradients.  相似文献   
113.
Although sterol carrier protein-2 (SCP-2) stimulates sterol transfer in vitro, almost nothing is known regarding the identity of the putative cholesterol binding site. Furthermore, the interrelationship(s) between this SCP-2 ligand binding site and the recently reported SCP-2 long chain fatty acid (LCFA) and long chain fatty acyl-CoA (LCFA-CoA) binding site(s) remains to be established. In the present work, two SCP-2 ligand binding sites were identified. First, both [4-(13)C]cholesterol and 22-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol (NBD-cholesterol) binding assays were consistent with a single cholesterol binding site in SCP-2. This ligand binding site had high affinity for NBD-cholesterol, K(d) = 4.15 +/- 0.71 nM. (13)C NMR-labeled ligand competition studies demonstrated that the SCP-2 high affinity cholesterol binding site also bound LCFA or LCFA-CoA. However, only the LCFA-CoA was able to effectively displace the SCP-2-bound [4-(13)C]cholesterol. Thus, the ligand affinities at this SCP-2 binding site were in the relative order cholesterol = LCFA-CoA > LCFA. Second, (13)C NMR studies demonstrated the presence of another ligand binding site on SCP-2 that bound either LCFA or LCFA-CoA but not cholesterol. Photon correlation spectroscopy was consistent with SCP-2 being monomeric in both liganded and unliganded states. In summary, both (13)C NMR and fluorescence techniques demonstrated for the first time that SCP-2 had a single high affinity binding site that bound cholesterol, LCFA, or LCFA-CoA. Furthermore, results with (13)C NMR supported the presence of a second SCP-2 ligand binding site that bound either LCFA or LCFA-CoA but not cholesterol. These data contribute to our understanding of a role for SCP-2 in both cellular cholesterol and LCFA metabolism.  相似文献   
114.
Human basophils secrete histamine and leukotriene C4 (LTC4) in response to various stimuli, such as Ag and the bacterial product, FMLP. IgE-mediated stimulation also results in IL-4 secretion. However, the mechanisms of these three classes of secretion are unknown in human basophils. The activation of extracellular signal-regulated kinases (ERKs; ERK-1 and ERK-2) during IgE- and FMLP-mediated stimulation of human basophils was examined. Following FMLP stimulation, histamine release preceded phosphorylation of ERKs, whereas phosphorylation of cytosolic phospholipase A2 (cPLA2), and arachidonic acid (AA) and LTC4 release followed phosphorylation of ERKs. The phosphorylation of ERKs was transient, decreasing to baseline levels after 15 min. PD98059 (MEK inhibitor) inhibited the phosphorylation of ERKs and cPLA2 without inhibition of several other tyrosine phosphorylation events, including phosphorylation of p38 MAPK. PD98059 also inhibited LTC4 generation (IC50 = approximately 2 microM), but not histamine release. Stimulation with anti-IgE Ab resulted in the phosphorylation of ERKs, which was kinetically similar to both histamine and LTC4 release and decreased toward resting levels by 30 min. Similar to FMLP, PD98059 inhibited anti-IgE-mediated LTC4 release (IC50, approximately 2 microM), with only a modest effect on histamine release and IL-4 production at higher concentrations. Taken together, these results suggest that ERKs might selectively regulate the pathway leading to LTC4 generation by phosphorylating cPLA2, but not histamine release or IL-4 production, in human basophils.  相似文献   
115.
116.
The energetics of small internal loops are important for prediction of RNA secondary and tertiary structure, selection of drug target sites, and understanding RNA structure-function relationships. Hydrogen bonding, base stacking, electrostatic interactions, backbone distortion, and base-pair size compatibility all contribute to the energetics of small internal loops. Thus, the sequence dependence of these energetics are idiosyncratic. Current approximations for predicting the free energies of internal loops consider size, asymmetry, closing base pairs, and the potential to form GA, GG, or UU pairs. The database of known three-dimensional structures allows for comparison with the models used for predicting stability from sequence.  相似文献   
117.
Norepinephrine transporter (NET) function has a central role in the regulation of synaptic norepinephrine concentrations. Clinical observations in orthostatic intolerance patients suggest a gender difference in NET function. We compared the cardiovascular response to selective NET inhibition with reboxetine between 12 healthy men and 12 age-matched women. Finger blood pressure, brachial blood pressure, and heart rate were measured. The subjects underwent cardiovascular autonomic reflex testing and a graded head-up tilt test. In a separate study, we applied incremental concentrations of tyramine and isoproterenol through subcutaneous microdialysis catheters in eight men and in eight women. NET inhibition elicited a threefold greater increase in supine blood pressure in men than women (P < 0.05). The pressor response was driven by an increased cardiac output. The orthostatic heart rate increase during NET inhibition was greater in men than women (56 +/- 5 beats/min in men, 42 +/- 4 beats/min in women, P < 0.001). In contrast, NET inhibition resulted in a similar suppression in the cold pressor and handgrip response, low-frequency blood pressure oscillations, and venous norepinephrine in the supine position. Men and women were similarly sensitive to the lipolytic effect of isoproterenol and tyramine. We conclude that NET inhibition results in more pronounced changes in cardiac regulation in men than women. Our observations suggest that the NET contribution to cardiac norepinephrine turnover may be decreased in women. The gender difference in NET function may not be expressed in tissues that are less NET dependent than the heart.  相似文献   
118.
Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.  相似文献   
119.
Our goal is to construct a robust physical map for maize (Zea mays) comprehensively integrated with the genetic map. We have used a two-dimensional 24 x 24 overgo pooling strategy to anchor maize expressed sequence tagged (EST) unigenes to 165,888 bacterial artificial chromosomes (BACs) on high-density filters. A set of 70,716 public maize ESTs seeded derivation of 10,723 EST unigene assemblies. From these assemblies, 10,642 overgo sequences of 40 bp were applied as hybridization probes. BAC addresses were obtained for 9,371 overgo probes, representing an 88% success rate. More than 96% of the successful overgo probes identified two or more BACs, while 5% identified more than 50 BACs. The majority of BACs identified (79%) were hybridized with one or two overgos. A small number of BACs hybridized with eight or more overgos, suggesting that these BACs must be gene rich. Approximately 5,670 overgos identified BACs assembled within one contig, indicating that these probes are highly locus specific. A total of 1,795 megabases (Mb; 87%) of the total 2,050 Mb in BAC contigs were associated with one or more overgos, which are serving as sequence-tagged sites for single nucleotide polymorphism development. Overgo density ranged from less than one overgo per megabase to greater than 20 overgos per megabase. The majority of contigs (52%) hit by overgos contained three to nine overgos per megabase. Analysis of approximately 1,022 Mb of genetically anchored BAC contigs indicates that 9,003 of the total 13,900 overgo-contig sites are genetically anchored. Our results indicate overgos are a powerful approach for generating gene-specific hybridization probes that are facilitating the assembly of an integrated genetic and physical map for maize.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号