首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   34篇
  392篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   11篇
  2014年   14篇
  2013年   14篇
  2012年   28篇
  2011年   17篇
  2010年   18篇
  2009年   11篇
  2008年   16篇
  2007年   18篇
  2006年   16篇
  2005年   14篇
  2004年   16篇
  2003年   11篇
  2002年   15篇
  2001年   9篇
  2000年   7篇
  1999年   10篇
  1998年   7篇
  1997年   5篇
  1995年   6篇
  1994年   5篇
  1992年   8篇
  1991年   9篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1983年   3篇
  1980年   3篇
  1979年   2篇
  1977年   4篇
  1975年   3篇
  1974年   2篇
  1973年   6篇
  1971年   3篇
  1970年   5篇
  1969年   3篇
  1967年   2篇
  1958年   3篇
  1931年   1篇
  1923年   1篇
排序方式: 共有392条查询结果,搜索用时 0 毫秒
131.

Background

Mean or maximal intima-media thickness (IMT) is commonly used as surrogate endpoint in intervention studies. However, the effect of normalization by surrounding or median IMT or by diameter is unknown. In addition, it is unclear whether IMT inhomogeneity is a useful predictor beyond common wall parameters like maximal wall thickness, either absolute or normalized to IMT or lumen size. We investigated the interrelationship of common carotid artery (CCA) thickness parameters and their association with the ipsilateral internal carotid artery (ICA) stenosis degree.

Methods

CCA thickness parameters were extracted by edge detection applied to ultrasound B-mode recordings of 240 patients. Degree of ICA stenosis was determined from CT angiography.

Results

Normalization of maximal CCA wall thickness to median IMT leads to large variations. Higher CCA thickness parameter values are associated with a higher degree of ipsilateral ICA stenosis (p?<?0.001), though IMT inhomogeneity does not provide extra information. When the ratio of wall thickness and diameter instead of absolute maximal wall thickness is used as risk marker for having moderate ipsilateral ICA stenosis (>50%), 55 arteries (15%) are reclassified to another risk category.

Conclusions

It is more reasonable to normalize maximal wall thickness to end-diastolic diameter rather than to IMT, affecting risk classification and suggesting modification of the Mannheim criteria.

Trial registration

Clinical trials.gov NCT01208025.
  相似文献   
132.
Acridone synthase (ACS) and chalcone synthase (CHS) catalyse the pivotal reactions in the formation of acridone alkaloids or flavonoids. While acridone alkaloids are confined almost exclusively to the Rutaceae, flavonoids occur abundantly in all seed-bearing plants. ACSs and CHSs had been cloned from Ruta graveolens and shown to be closely related polyketide synthases which use N-methylanthraniloyl-CoA and 4-coumaroyl-CoA, respectively, as the starter substrate to produce the acridone or naringenin chalcone. As proposed for the related 2-pyrone synthase from Gerbera, the differential substrate specificities of ACS and CHS might be attributed to the relative volume of the active site cavities. The primary sequences as well as the immunological cross reactivities and molecular modeling studies suggested an almost identical spatial structure for ACS and CHS. Based on the Ruta ACS2 model the residues Ser132, Ala133 and Val265 were assumed to play a critical role in substrate specificity. Exchange of a single amino acid (Val265Phe) reduced the catalytic activity by about 75% but grossly shifted the specificity towards CHS activity, and site-directed mutagenesis replacing all three residues by the corresponding amino acids present in CHS (Ser132Thr, Ala133Ser and Val265Phe) fully transformed the enzyme to a functional CHS with comparatively marginal ACS activity. The results suggested that ACS divergently has evolved from CHS by very few amino acid exchanges, and it remains to be established why this route of functional diversity has developed in the Rutaceae only.  相似文献   
133.
The physiological consequences of exposure to several possible spacecraft atmospheres were evaluated. Each atmosphere contained oxygen at a partial pressure of 180 mm Hg. Rabbits and rats were exposed at 1 atm abs. for one week each to atmospheres containing nitrogen, helium, argon or neon; and to pure oxygen at 200 mm Hg. In addition rats were exposed at a total pressure of 474 mm Hg to atmospheres containing nitrogen, helium or neon.Metabolic rates were increased in animals exposed to helium-oxygen at sea level, and reduced in those exposed to the low pressure, pure oxygen environment. Rates during sea-level exposures to argon and neon, and during the altitude exposures, did not differ appreciably from results obtained in air at sea level. Rabbits sustained a significant loss of hemoglobin (9%) and red blood cells during their exposure to helium-oxygen.These responses are consistent with the thermal characteristics of the several gaseous environments. A good correlation was found to exist between the calculated relative convective heat transfer in the various atmospheres and the observed metabolic rates. The possibility of an effect of helium at the molecular level has not been ruled out completely.After saturation with the inert gases studied, rats decompressed to 100 mm Hg showed the most severe symptoms of decompression sickness; nitrogen produced less damage; animals exposed to helium or neon were free of serious symptoms.The data provide the first experimental support for several theoretical advantages of neon for use in space cabin atmospheres.This work was supported by the USAF School of Aerospace Medicine under contract AF 41 (609)-2711, to Union Carbide Corporation, Tonawanda, N.Y. These experiments were conducted in 1965–1966 as a preliminary screening whose intent was to compare a wide variety of environmental and physiological parameters in a restricted number of subjects; the data should be interpreted with these limitations in mind.  相似文献   
134.
Aluminum (Al)-induced damage to leaves and roots of two Al-resistant (cv. Atlas 66, experimental line PT741) and two Al-sensitive (cv. Scout 66, cv. Katepwa) lines ofTriticum aestivum L. was estimated using the deposition of (1, 3)--glucans (callose) as a marker for injury. Two-day-old seedlings were grown for forty hours in nutrient solutions with or without added Al, and callose deposition was quantified by spectrofluorometry (0–1000 µM Al) and localized by fluorescence microscopy (0 and 400 µM Al). Results suggested that Al caused little damage to leaves. No callose was observed in leaves with up to 400 µM Al treatment. In contrast, root callose concentration increased with Al treatment, especially in the Al-sensitive lines. At 400 µM Al, root callose concentration of Al-sensitive Scout 66 was nearly four-fold that of Al-resistant Atlas 66. After Al treatment, large callose deposits were observed in the root cap, epidermis and outer cortex of root tips of Scout 66, but not Atlas 66. The identity of callose was confirmed by a reduced fluorescence in Al-treated roots: firstly, after adding an inhibitor of callose synthesis (2-deoxy-D-glucose) to the nutrient solution, and secondly, after incubating root sections with the callosedegrading enzyme -D-glucoside glucohydrolase [EC 3.2.1.21]. Root callose deposition may be a good marker for Al-induced injury due to its early detection by spectrofluorometry and its close association with stress perception.Abbreviations DDG 2-deoxy-D-glucose - PAS periodic acid - Schiffs reagent - PE pachyman equivalents  相似文献   
135.
Circular RNAs (circRNAs) are a class of noncoding RNAs, generated from pre-mRNAs by circular splicing of exons and functionally largely uncharacterized. Here we report on the design, expression, and characterization of artificial circRNAs that act as protein sponges, specifically binding and functionally inactivating hnRNP (heterogeneous nuclear ribonucleoprotein) L. HnRNP L regulates alternative splicing, depending on short CA-rich RNA elements. We demonstrate that designer hnRNP L-sponge circRNAs with CA-repeat or CA-rich sequence clusters can efficiently and specifically modulate splicing-regulatory networks in mammalian cells, including alternative splicing patterns and the cellular distribution of a splicing factor. This new strategy can in principle be applied to any RNA-binding protein, opening up new therapeutic strategies in molecular medicine.  相似文献   
136.
Schreiner D  Müller K  Hofer HW 《FEBS letters》2006,580(22):5295-5300
The cadherin superfamily protein Fat1 is known to interact with the EVH1 domain of mammalian Ena/VASP. Here we demonstrate that: (i) the scaffolding proteins Homer-3 and Homer-1 also interact with the EVH1 binding site of hFat1 in vitro, and (ii) binding of Homer-3 and Mena to hFat1 is mutually competitive. Endogenous Fat1 binds to immobilised Homer-3 and endogenous Homer-3 binds to immobilised Fat1. Both, endogenous and over-expressed Fat1 exhibit co-localisation with Homer-3 in cellular protrusions and at the plasma membrane of HeLa cells. As Homer proteins and Fat1 have been both linked to psychic disorders, their interaction may be of patho-physiological importance.  相似文献   
137.
The multiple myeloma (MM) bone marrow (BM) microenvironment plays a critical role in supporting tumor growth and survival as well as in promoting formation of osteolytic lesions. Recent results suggest that the p38 mitogen-activated protein kinase (MAPK) is an important factor in maintaining this activated environment. In this report, we demonstrate that the p38alpha MAPK inhibitor, SCIO-469, suppresses secretion of the tumor-supportive factors IL-6 and VEGF from BM stromal cells (BMSCs) as well as cocultures of BMSCs with MM cells, resulting in reduction in MM cell proliferation. Additionally, we show that SCIO-469 prevents TNFalpha-induced adhesion of MM cells to BMSCs through an ICAM-1- and VCAM-1-independent mechanism. Microarray analysis revealed a novel set of TNFalpha-induced chemokines in BMSCs that is strongly inhibited by SCIO-469. Furthermore, reintroduction of chemokines CXCL10 and CCL8 to BMSCs overcomes the inhibitory effect of SCIO-469 on TNFalpha-induced MM adhesion. Lastly, we show that SCIO-469 inhibits secretion and expression of the osteoclast-activating factors IL-11, RANKL, and MIP-1alpha as well as prevents human osteoclast formation in vitro. Collectively, these results suggest that SCIO-469 treatment can suppress factors in the bone marrow microenvironment to inhibit MM cell proliferation and adhesion and also to alleviate osteolytic activation in MM.  相似文献   
138.
The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.  相似文献   
139.
Many solute transporters are heterodimers composed of non-glycosylated catalytic and glycosylated accessory subunits. These transporters are specifically polarized to the apical or basolateral membranes of epithelia, but this polarity may vary to fulfill tissue-specific functions. To date, the mechanisms regulating the tissue-specific polarity of heteromeric transporters remain largely unknown. Here, we investigated the sorting signals that determine the polarity of three members of the proton-coupled monocarboxylate transporter (MCT) family, MCT1, MCT3 and MCT4, and their accessory subunit CD147. We show that MCT3 and MCT4 harbor strong redundant basolateral sorting signals (BLSS) in their C-terminal cytoplasmic tails that can direct fusion proteins with the apical marker p75 to the basolateral membrane. In contrast, MCT1 lacks a BLSS and its polarity is dictated by CD147, which contains a weak BLSS that can direct Tac, but not p75 to the basolateral membrane. Knockdown experiments in MDCK cells indicated that basolateral sorting of MCTs was clathrin-dependent but clathrin adaptor AP1B-independent. Our results explain the consistently basolateral localization of MCT3 and MCT4 and the variable localization of MCT1 in different epithelia. They introduce a new paradigm for the sorting of heterodimeric transporters in which a hierarchy of apical and BLSS in the catalytic and/or accessory subunits regulates their tissue-specific polarity.  相似文献   
140.

Background  

G-protein-coupled receptors (GPCRs) play a crucial role in many biological processes and represent a major class of drug targets. However, purification of GPCRs for biochemical study is difficult and current methods of studying receptor-ligand interactions involve in vitro systems. Caenorhabditis elegans is a soil-dwelling, bacteria-feeding nematode that uses GPCRs expressed in chemosensory neurons to detect bacteria and environmental compounds, making this an ideal system for studying in vivo GPCR-ligand interactions. We sought to test this by functionally expressing two medically important mammalian GPCRs, somatostatin receptor 2 (Sstr2) and chemokine receptor 5 (CCR5) in the gustatory neurons of C. elegans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号