首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1463篇
  免费   131篇
  2021年   23篇
  2020年   8篇
  2019年   11篇
  2018年   9篇
  2017年   7篇
  2016年   24篇
  2015年   35篇
  2014年   46篇
  2013年   55篇
  2012年   80篇
  2011年   92篇
  2010年   43篇
  2009年   53篇
  2008年   54篇
  2007年   64篇
  2006年   80篇
  2005年   52篇
  2004年   51篇
  2003年   36篇
  2002年   50篇
  2001年   51篇
  2000年   44篇
  1999年   44篇
  1998年   29篇
  1997年   20篇
  1996年   17篇
  1995年   21篇
  1994年   24篇
  1993年   9篇
  1992年   39篇
  1991年   36篇
  1990年   26篇
  1989年   28篇
  1988年   19篇
  1987年   19篇
  1986年   27篇
  1985年   27篇
  1984年   25篇
  1983年   16篇
  1982年   9篇
  1981年   15篇
  1979年   20篇
  1978年   14篇
  1977年   14篇
  1976年   15篇
  1975年   7篇
  1974年   17篇
  1972年   11篇
  1971年   7篇
  1969年   10篇
排序方式: 共有1594条查询结果,搜索用时 15 毫秒
991.
Increasing soil salinity reduces crop yields worldwide, with rice being particularly affected. We have examined the correlation between apoplastic barrier formation in roots, Na+ uptake into shoots and plant survival for three rice (Oryza sativa L.) cultivars of varying salt sensitivity: the salt-tolerant Pokkali, moderately tolerant Jaya and sensitive IR20. Rice plants grown hydroponically or in soil for 1 month were subjected to both severe and moderate salinity stress. Apoplastic barriers in roots were visualized using fluorescence microscopy and their chemical composition determined by gas chromatography and mass spectrometry. Na+ content was estimated by flame photometry. Suberization of apoplastic barriers in roots of Pokkali was the most extensive of the three cultivars, while Na+ accumulation in the shoots was the least. Saline stress induced the strengthening of these barriers in both sensitive and tolerant cultivars, with increase in mRNAs encoding suberin biosynthetic enzymes being detectable within 30 min of stress. Enhanced barriers were detected after several days of moderate stress. Overall, more extensive apoplastic barriers in roots correlated with reduced Na+ uptake and enhanced survival when challenged with high salinity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
992.
The accumulation of storage compounds is an important aspect of cereal seed metabolism. Due to the agronomical importance of the storage reserves of starch, protein, and oil, the understanding of storage metabolism is of scientific interest, with practical applications in agronomy and plant breeding. To get insight into storage patterning in developing cereal seed in response to environmental and genetic perturbation, a computational analysis of seed metabolism was performed. A metabolic network of primary metabolism in the developing endosperm of barley (Hordeum vulgare), a model plant for temperate cereals, was constructed that includes 257 biochemical and transport reactions across four different compartments. The model was subjected to flux balance analysis to study grain yield and metabolic flux distributions in response to oxygen depletion and enzyme deletion. In general, the simulation results were found to be in good agreement with the main biochemical properties of barley seed storage metabolism. The predicted growth rate and the active metabolic pathway patterns under anoxic, hypoxic, and aerobic conditions predicted by the model were in accordance with published experimental results. In addition, the model predictions gave insight into the potential role of inorganic pyrophosphate metabolism to maintain seed metabolism under oxygen deprivation.  相似文献   
993.
Molecular identification of the Ca2+-dependent chloride channel TMEM16A (ANO1) provided a fundamental step in understanding Ca2+-dependent Cl secretion in epithelia. TMEM16A is an intrinsic constituent of Ca2+-dependent Cl channels in cultured epithelia and may control salivary output, but its physiological role in native epithelial tissues remains largely obscure. Here, we demonstrate that Cl secretion in native epithelia activated by Ca2+-dependent agonists is missing in mice lacking expression of TMEM16A. Ca2+-dependent Cl transport was missing or largely reduced in isolated tracheal and colonic epithelia, as well as hepatocytes and acinar cells from pancreatic and submandibular glands of TMEM16A−/− animals. Measurement of particle transport on the surface of tracheas ex vivo indicated largely reduced mucociliary clearance in TMEM16A−/− mice. These results clearly demonstrate the broad physiological role of TMEM16A−/− for Ca2+-dependent Cl secretion and provide the basis for novel treatments in cystic fibrosis, infectious diarrhea, and Sjöegren syndrome.Electrolyte secretion in epithelial tissues is based on the major second messenger pathways cAMP and Ca2+, which activate the cystic fibrosis transmembrane conductance regulator (CFTR)2 Cl channels and Ca2+-dependent Cl channels, respectively (13). CFTR conducts Cl in epithelial cells of airways, intestine, and the ducts of pancreas and sweat gland, while Ca2+-dependent Cl channels secrete Cl in pancreatic acini and salivary and sweat glands (46). Controversy exists as to the contribution of these channels to Cl secretion in submucosal glands of airways and the relevance for cystic fibrosis (79). While cAMP-dependent Cl secretion by CFTR is well examined, detailed analysis of epithelial Ca2+-dependent Cl secretion is hampered by the lack of a molecular counterpart. Although bestrophins may form Ca2+-dependent Cl channels and facilitate Ca2+-dependent Cl secretion in epithelial tissues (10, 11), they are unlikely to form secretory Cl channels in the apical cell membrane, because Ca2+-dependent Cl secretion is still present in epithelia of mice lacking expression of bestrophin (12). Bestrophins may rather have an intracellular function by facilitating receptor mediated Ca2+ signaling and activation of membrane localized channels (13). With the discovery that TMEM16A produces Ca2+-activated Cl currents with biophysical and pharmacological properties close to those in native epithelial tissues, these proteins are now very likely candidates for endogenous Ca2+-dependent Cl channels (1417). In cultured airway epithelial cells, small interfering RNA knockdown of endogenous TMEM16A largely reduced calcium-dependent chloride secretion (16). However, apart from preliminary studies of airways and salivary glands, the physiological significance of TMEM16A in native epithelia, particularly in glands, is unclear (14, 17).  相似文献   
994.
All vertebrate cells regulate their cell volume by activating chloride channels of unknown molecular identity, thereby activating regulatory volume decrease. We show that the Ca2+-activated Cl channel TMEM16A together with other TMEM16 proteins are activated by cell swelling through an autocrine mechanism that involves ATP release and binding to purinergic P2Y2 receptors. TMEM16A channels are activated by ATP through an increase in intracellular Ca2+ and a Ca2+-independent mechanism engaging extracellular-regulated protein kinases (ERK1/2). The ability of epithelial cells to activate a Cl conductance upon cell swelling, and to decrease their cell volume (regulatory volume decrease) was dependent on TMEM16 proteins. Activation of ICl,swell was reduced in the colonic epithelium and in salivary acinar cells from mice lacking expression of TMEM16A. Thus TMEM16 proteins appear to be a crucial component of epithelial volume-regulated Cl channels and may also have a function during proliferation and apoptotic cell death.Regulation of cell volume is fundamental to all cells, particularly during cell growth and division. External hypotonicity leads to cell swelling and subsequent activation of volume-regulated chloride and potassium channels, to release intracellular ions and to re-shrink the cells, a process termed regulatory volume decrease (RVD)3 (1). Volume-regulated chloride currents (ICl,swell) have dual functions during cell proliferation as well as apoptotic volume decrease (AVD), preceding apoptotic cell death (2). Although ICl,swell is activated in swollen cells to induce RVD, AVD takes place under normotonic conditions to shrink cells (3, 4). Early work suggested intracellular Ca2+ as an important mediator for activation of ICl,swell and volume-regulated K+ channels (5), whereas subsequent studies only found a permissive role of Ca2+ for activation of ICl,swell (6), reviewed in Ref. 1. In addition, a plethora of factors and signaling pathways have been implicated in activation of ICl,swell, making cell volume regulation an extremely complex process (reviewed in Refs. 1, 3, and 7). These factors include intracellular ATP, the cytoskeleton, phospholipase A2-dependent pathways, and protein kinases such as extracellular-regulated kinase ERK1/2 (reviewed in Refs. 1 and 7). Previous approaches in identifying swelling-activated Cl channels have been unsuccessful or have produced controversial data. Thus none of the previous candidates such as pICln, the multidrug resistance protein, or ClC-3 are generally accepted to operate as volume-regulated Cl channels (reviewed in Refs. 8 and 9). Notably, the cystic fibrosis transmembrane conductance regulator (CFTR) had been shown in earlier studies to influence ICl,swell and volume regulation (1012). The variable properties of ICl,swell suggest that several gene products may affect ICl,swell in different cell types.The TMEM16 transmembrane protein family consists of 10 different proteins with numerous splice variants that contain 8–9 transmembrane domains and have predicted intracellular N- and C-terminal tails (13, 1618). TMEM16A (also called ANO1) is required for normal development of the murine trachea (14) and is associated with different types of tumors, dysplasia, and nonsyndromic hearing impairment (13, 15). TMEM16A has been identified as a subunit of Ca2+-activated Cl channels that are expressed in epithelial and non-epithelial tissues (1618). Interestingly, members of the TMEM16 family have been suggested to play a role in osmotolerance in Saccharomyces cerevisiae (19). Here we show that TMEM16 proteins also contribute to ICl,swell and regulatory volume decrease.  相似文献   
995.
The tRNAGly/Glycyl-tRNA synthetase system belongs to the so called ‘class II’ in which tRNA identity elements consist of relative few and simple motifs, as compared to ‘class I’ where the tRNA determinants are more complicated and spread over different parts of the tRNA, mostly including the anticodon. The determinants from ‘class II’ although, are located in the aminoacyl stem and sometimes include the discriminator base. There exist predominant structure differences for the Glycyl-tRNA-synthetases and for the tRNAGly identity elements comparing eucaryotic/archaebacterial and eubacterial systems.We focus on comparative X-ray structure analysis of tRNAGly acceptor stem microhelices from different organisms. Here, we report the X-ray structure of the human tRNAGly microhelix isoacceptor G9990 at 1.18 Å resolution. Superposition experiments to another human tRNAGly microhelix and a detailed comparison of the RNA hydration patterns show a great number of water molecules with identical positions in both RNAs. This is the first structure comparison of hydration layers from two isoacceptor tRNA microhelices with a naturally occurring base pair exchange.  相似文献   
996.
Schreiber L  Elshatshat S  Koch K  Lin J  Santrucek J 《Planta》2006,223(2):283-290
Counter diffusion of chloride, applied as NaCl at the inner side of isolated cuticles, and silver, applied as AgNO3 at the outer side, lead to the formation of insoluble AgCl precipitates in isolated cuticles. AgCl precipitates could be visualized by light and scanning electron microscopy. The presence of AgCl precipitates in isolated cuticles was verified by energy dispersive X-ray analysis. It is argued that insoluble AgCl precipitates formed in polar pores of cuticles and as a consequence, cuticular transpiration of 13 out of 15 investigated species was significantly reduced up to three-fold. Water as a small and uncharged but polar molecule penetrates cuticles via two parallel paths: a lipophilic path, formed by lipophilic cutin and wax domains, and a aqueous pathe, formed by polar pores. Thus, permeances P (m s−1) of water, which is composed of the two quantities P Lipid and P Pore, decreased, since water transport across polar pores was affected by AgCl precipitates. Cuticles with initially high rates of cuticular transpiration were generally more sensitive towards AgCl precipitates compared to cuticles with initially low rates of transpiration. Results presented here, significantly improves the current model of the structure of the cuticular transpiration barrier, since the pronounced heterogeneity of the cuticular transport barrier, composed of lipophilic as well as polar paths of diffusion, has to be taken into account in future.  相似文献   
997.
Poly-(ADP-ribose) polymerase-2 (PARP-2) belongs to a large family of enzymes that synthesize and transfer ADP-ribose polymers to acceptor proteins, modifying their functional properties. PARP-2-deficient (Parp-2-/-) cells, similar to Parp-1-/- cells, are sensitive to both ionizing radiation and alkylating agents. Here we show that inactivation of mouse Parp-2, but not Parp-1, produced a two-fold reduction in CD4+CD8+ double-positive (DP) thymocytes associated with decreased DP cell survival. Microarray analyses revealed increased expression of the proapoptotic Bcl-2 family member Noxa in Parp-2-/- DP thymocytes compared to littermate controls. In addition, DP thymocytes from Parp-2-/- have a reduced expression of T-cell receptor (TCR)alpha and a skewed repertoire of TCRalpha toward the 5' Jalpha segments. Our results show that in the absence of PARP-2, the survival of DP thymocytes undergoing TCRalpha recombination is compromised despite normal amounts of Bcl-xL. These data suggest a novel role for PARP-2 as an important mediator of T-cell survival during thymopoiesis by preventing the activation of DNA damage-dependent apoptotic response during the multiple rounds of TCRalpha rearrangements preceding a positively selected TCR.  相似文献   
998.
Host immune response influences the clinical outcome of Helicobacter pylori infection leading to ulcer disease, gastric carcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. A genetic risk profile for gastric cancer has been identified, but genetic susceptibility to develop MALT lymphoma is still unclear. We investigated the role of NOD1 and NOD2 as intracellular recognition molecules for pathogen-associated molecules in H. pylori infection in vitro and analysed the influence of single nucleotide polymorphisms on susceptibility to ulcer disease and MALT lymphoma. Expression of NOD1 and NOD2 significantly sensitized HEK293 cells to H. pylori-induced NF-kappaB activation in a cag pathogenicity island (cagPAI)-dependent manner. In cells carrying the Crohn-associated NOD2 variant R702W the NF-kappaB response was significantly diminished. NOD1/NOD2 expression levels were induced in the gastric epithelium in H. pylori-positive patients. No mutations were found to be associated with gastritis or gastric ulcer development. However, the R702W mutation in the NOD2/CARD15 gene was significantly associated with gastric lymphoma. Carrier of the rare allele T had a more than doubled risk to develop lymphoma than controls [odds ratio (OR): 2.4, 95% confidence interval (CI): 1.2-4.6; P < 0.044]. H. pylori-induced upregulation of NOD1 and NOD2 in vivo may play a critical role in the recognition of this common pathogen. A missense mutation in the leucine-rich region of CARD15 is associated with gastric lymphoma.  相似文献   
999.
1000.
Poly(ADP-ribose)polymerase 1 (PARP1) is well characterized for its role in base excision repair (BER), where it is activated by and binds to DNA breaks and catalyzes the poly(ADP-ribosyl)ation of several substrates involved in DNA damage repair. Here we demonstrate that PARP1 associates with telomere repeat binding factor 2 (TRF2) and is capable of poly(ADP-ribosyl)ation of TRF2, which affects binding of TRF2 to telomeric DNA. Immunostaining of interphase cells or metaphase spreads shows that PARP1 is detected sporadically at normal telomeres, but it appears preferentially at eroded telomeres caused by telomerase deficiency or damaged telomeres induced by DNA-damaging reagents. Although PARP1 is dispensable in the capping of normal telomeres, Parp1 deficiency leads to an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA in primary murine cells after induction of DNA damage. Our results suggest that upon DNA damage, PARP1 is recruited to damaged telomeres, where it can help protect telomeres against chromosome end-to-end fusions and genomic instability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号