首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   591篇
  免费   70篇
  国内免费   1篇
  2023年   3篇
  2022年   8篇
  2021年   9篇
  2020年   14篇
  2019年   7篇
  2018年   6篇
  2017年   10篇
  2016年   10篇
  2015年   26篇
  2014年   14篇
  2013年   23篇
  2012年   37篇
  2011年   32篇
  2010年   16篇
  2009年   30篇
  2008年   27篇
  2007年   18篇
  2006年   26篇
  2005年   21篇
  2004年   27篇
  2003年   23篇
  2002年   11篇
  2001年   17篇
  2000年   15篇
  1999年   12篇
  1998年   8篇
  1997年   7篇
  1994年   6篇
  1993年   9篇
  1992年   14篇
  1991年   12篇
  1990年   7篇
  1989年   12篇
  1988年   12篇
  1987年   12篇
  1986年   4篇
  1985年   6篇
  1984年   8篇
  1983年   11篇
  1982年   11篇
  1981年   10篇
  1979年   9篇
  1978年   5篇
  1977年   5篇
  1976年   8篇
  1975年   6篇
  1974年   5篇
  1972年   4篇
  1955年   2篇
  1950年   2篇
排序方式: 共有662条查询结果,搜索用时 15 毫秒
51.
In our on‐going pursuit to discover natural products and natural product‐based compounds to control the bacterial species Flavobacterium columnare, which causes columnaris disease in channel catfish (Ictalurus punctatus), we synthesized flavone and chalcone analogs, and evaluated these compounds, along with flavonoids from natural sources, for their antibacterial activities against two isolates of F. columnare (ALM‐00‐173 and BioMed) using a rapid bioassay. The flavonoids chrysin ( 1a ), 5,7‐dihydroxy‐4′‐methoxyflavone ( 11 ), isorhamnetin ( 26 ), luteolin ( 27 ), and biochanin A ( 29 ), and chalcone derivative 8b showed strong antibacterial activities against F. columnare ALM‐00‐173 based on minimum inhibition concentration (MIC) results. Flavonoids 1a, 8, 11, 13 (5,4′‐dihydroxy‐7‐methoxyflavone), 26 , and 29 exhibited strong antibacterial activities against F. columnare BioMed based upon MIC results. The 24‐h 50% inhibition concentration (IC50) results revealed that 27 and 29 were the most active compounds against F. columnare ALM‐00‐173 (IC50 of 7.5 and 8.5 mg/l, resp.), while 26 and 29 were the most toxic compound against F. columnare BioMed (IC50 of 9.2 and 3.5 mg/l, resp.). These IC50 results were lower than those obtained for wogonin against F. columnare ALM‐00‐173 and F. columnare BioMed (28.4 and 5.4 mg/l, resp.). However, based on MIC results, none of the compounds evaluated in this study were as active as wogonin (MIC 0.3 mg/l for each F. columnare isolate). Further modification of the wogonin structure to enhance antibacterial is of interest.  相似文献   
52.
One of the fundamental principles of social organization, age polyethism, describes behavioral maturation of workers leading to switches in task preference. Here we present a system that allows for studying division of labor (DOL) by taking advantage of the relative short life of Cardiocondyla obscurior workers and thereby the pace of behavioral transitions. By challenging same-age young and older age cohorts to de novo establish DOL into nurse and foraging tasks and by forcing nurses to precociously become foragers and vice versa we studied expression patterns of one of the best known candidates for social insect worker behavior, the foraging gene. Contrary to our expectations we found that foraging gene expression correlates with age, but not with the task foraging per se. This suggests that this nutrition-related gene, and the pathways it is embedded in, correlates with physiological changes over time and potentially primes, but not determines task preference of individual workers.  相似文献   
53.
Phytotoxic microbial metabolites produced by certain phytopathogenic fungi and bacteria, and a group of phytotoxic plant metabolites including Amaryllidacea alkaloids and some derivatives of these compounds were evaluated for algicide, bactericide, insecticide, fungicide, and herbicide activities in order to discover natural compounds for potential use in the management and control of several important agricultural and household structural pests. Among the various compounds evaluated: i) ophiobolin A was found to be the most promising for potential use as a selective algicide; ii) ungeremine was discovered to be bactericidal against certain species of fish pathogenic bacteria; iii) cycasin caused significant mortality in termites; iv) cavoxin, ophiobolin A, and sphaeropsidin A were most active towards species of plant pathogenic fungi; and v) lycorine and some of its analogues (1‐O‐acetyllycorine and lycorine chlorohydrate) were highly phytotoxic in the herbicide bioassay. Our results further demonstrated that plants and microbes can provide a diverse and natural source of compounds with potential use as pesticides.  相似文献   
54.
Native salmonid fish have been displaced worldwide by nonnatives through hybridization, competition, and predation, but the dynamics of these factors are poorly understood. We apply stochastic Lotka-Volterra models to the displacement of cutthroat trout by rainbow/hybrid trout in the Snake River, Idaho, USA. Cutthroat trout are susceptible to hybridization in the river but are reproductively isolated in tributaries via removal of migratory rainbow/hybrid spawners at weirs. Based on information-theoretic analysis, population data provide evidence that hybridization was the primary mechanism for cutthroat trout displacement in the first 17 years of the invasion. However, under some parameter values, the data provide evidence for a model in which interaction occurs among fish from both river and tributary subpopulations. This situation is likely to occur when tributary-spawned cutthroat trout out-migrate to the river as fry. The resulting competition with rainbow/hybrid trout can result in the extinction of cutthroat trout even when reproductive segregation is maintained.  相似文献   
55.
Zymogen granules (ZGs) are specialized storage organelles in the exocrine pancreas that allow the sorting, packaging and regulated apical secretion of digestive enzymes. ZG constituents play important roles in pancreatic injury and disease. The molecular mechanisms underlying these processes are still poorly defined. Thus, there is currently great interest in the identification and characterization of ZG components. Recent proteomic studies have greatly enhanced our knowledge regarding potential new 'players' in ZG biogenesis and regulated secretion. In this article, we present the latest advancements in and insights into the analysis of the ZG proteome by the combination of organelle isolation, protein separation, mass spectrometry and validation of protein identification. Recent developments in the analysis of ZG proteins from pancreatic juice and related proteins from saliva are also discussed.  相似文献   
56.
Caprin-1 is a ubiquitously expressed, well-conserved cytoplasmic phosphoprotein that is needed for normal progression through the G(1)-S phase of the cell cycle and occurs in postsynaptic granules in dendrites of neurons. We demonstrate that Caprin-1 colocalizes with RasGAP SH3 domain binding protein-1 (G3BP-1) in cytoplasmic RNA granules associated with microtubules and concentrated in the leading and trailing edge of migrating cells. Caprin-1 exhibits a highly conserved motif, F(M/I/L)Q(D/E)Sx(I/L)D that binds to the NTF-2-like domain of G3BP-1. The carboxy-terminal region of Caprin-1 selectively bound mRNA for c-Myc or cyclin D2, this binding being diminished by mutation of the three RGG motifs and abolished by deletion of the RGG-rich region. Overexpression of Caprin-1 induced phosphorylation of eukaryotic translation initiation factor 2alpha (eIF-2alpha) through a mechanism that depended on its ability to bind mRNA, resulting in global inhibition of protein synthesis. However, cells lacking Caprin-1 exhibited no changes in global rates of protein synthesis, suggesting that physiologically, the effects of Caprin-1 on translation were limited to restricted subsets of mRNAs. Overexpression of Caprin-1 induced the formation of cytoplasmic stress granules (SG). Its ability to bind RNA was required to induce SG formation but not necessarily its ability to enter SG. The ability of Caprin-1 or G3BP-1 to induce SG formation or enter them did not depend on their association with each other. The Caprin-1/G3BP-1 complex is likely to regulate the transport and translation of mRNAs of proteins involved with synaptic plasticity in neurons and cellular proliferation and migration in multiple cell types.  相似文献   
57.
58.
Peroxisomes     
  相似文献   
59.
Biotechnological monoterpene oxidation has a considerable economic potential as an alternative route to natural monoterpenoid compounds with desirable organoleptic and pharmaceutical properties. Bacterial cytochrome P450 monooxygenases (CYPs) constitute ideal catalysts for monoterpene oxidation due to their pronounced selectivities, comparably high activities and ease of recombinant expression. Research activities of the recent decades resulted in the identification and characterization of many monoterpene oxidizing bacterial CYPs, often together with their electron transfer partners. To the authors’ knowledge, no industrial process of bacterial monoterpene oxidation has been established up to date. However, the last decade has seen movement away from small scale test tube sized reactions to research activities focusing on more sophisticated processes in larger volumes and in bioreactors. These research activities successfully combined improvements on all levels of a biotransformation process. Activity, selectivity and stability of bacterial CYPs were enhanced by rational protein design, substrate and product toxicity was counteracted with the development of feeding strategies and in situ product removal techniques. The disadvantage of costly cofactors was bypassed by the application of cofactor regeneration systems and by electrochemical substitution of cofactors.  相似文献   
60.

Background

The molecular mechanisms of variations in individual longevity are not well understood, even though longevity can be increased substantially by means of diverse experimental manipulations. One of the factors supposed to be involved in the increase of longevity is a higher stress resistance. To test this hypothesis in a natural system, eusocial insects such as bees or ants are ideally suited. In contrast to most other eusocial insects, ponerine ants show a peculiar life history that comprises the possibility to switch during adult life from a normal worker to a reproductive gamergate, therewith increasing their life expectancy significantly.

Results

We show that increased resistance against major stressors, such as reactive oxygen species and infection accompanies the switch from a life-history trait with normal lifespan to one with a longer life expectancy. A short period of social isolation was sufficient to enhance stress resistance of workers from the ponerine ant species Harpegnathos saltator significantly. All ant groups with increased stress resistances (reproducing gamergates and socially isolated workers) have lower catalase activities and glutathione levels than normal workers. Therewith, these ants resemble the characteristics of the youngest ants in the colony.

Conclusions

Social insects with their specific life history including a switch from normal workers to reproducing gamergates during adult life are well suited for ageing research. The regulation of stress resistance in gamergates seemed to be modified compared to foraging workers in an economic way. Interestingly, a switch towards more stress resistant animals can also be induced by a brief period of social isolation, which may already be associated with a shift to a reproductive trajectory. In Harpegnathos saltator, stress resistances are differently and potentially more economically regulated in reproductive individuals, highlighting the significance of reproduction for an increase in longevity in social insects. As already shown for other organisms with a long lifespan, this trait is not directly coupled to higher levels of enzymatic and non-enzymatic antioxidants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号