首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   589篇
  免费   70篇
  国内免费   1篇
  2023年   3篇
  2022年   6篇
  2021年   9篇
  2020年   14篇
  2019年   7篇
  2018年   6篇
  2017年   10篇
  2016年   10篇
  2015年   26篇
  2014年   14篇
  2013年   23篇
  2012年   37篇
  2011年   32篇
  2010年   16篇
  2009年   30篇
  2008年   27篇
  2007年   18篇
  2006年   26篇
  2005年   21篇
  2004年   27篇
  2003年   23篇
  2002年   11篇
  2001年   17篇
  2000年   15篇
  1999年   12篇
  1998年   8篇
  1997年   7篇
  1994年   6篇
  1993年   9篇
  1992年   14篇
  1991年   12篇
  1990年   7篇
  1989年   12篇
  1988年   12篇
  1987年   12篇
  1986年   4篇
  1985年   6篇
  1984年   8篇
  1983年   11篇
  1982年   11篇
  1981年   10篇
  1979年   9篇
  1978年   5篇
  1977年   5篇
  1976年   8篇
  1975年   6篇
  1974年   5篇
  1972年   4篇
  1955年   2篇
  1950年   2篇
排序方式: 共有660条查询结果,搜索用时 31 毫秒
31.
By mutant colony screening of Caldariomyces fumago a mutant was isolated which was slightly greenish on fructose minimal medium and grew slower in comparison to the wild type. The supernatant samples lacked the Soret band typical for the heme group of the CPO and nearly no CPO activity was detected. SDS-PAGE analysis of mutant culture supernatant samples showed production of a 38–40 kDa protein while wild type samples contain the 42 kDa CPO protein. Protein identification using nanoLC-ESI-MS/MS was performed and based on three peptides the protein in the mutant culture was identified as CPO. No differences in the CPO gene sequences of wild type and mutant were found indicating a post-translational defect in protein maturation. Deglycosylation experiments using CPO from wild type and mutant were carried out. After removing N-linked oligosaccharides from wild type CPO a protein band at 38–40 kDa was detected. Our results reveal that the mutant protein lacks the heme group as well as the N-glycans.  相似文献   
32.
33.
Up-regulation of carbonic anhydrase IX (CA IX) expression is an indicator of metastasis and associated with poor cancer patient prognosis. CA IX has emerged as a cancer drug target but development of isoform-specific inhibitors is challenging due to other highly conserved CA isoforms. In this study, a CA IXmimic construct was used (CA II with seven point mutations introduced, to mimic CA IX active site) while maintaining CA II solubility that make it amenable to crystallography. The structures of CA IXmimic unbound and in complex with saccharin (SAC) and a saccharin-glucose conjugate (SGC) were determined using joint X-ray and neutron protein crystallography. Previously, SAC and SGC have been shown to display CA isoform inhibitor selectivity in assays and X-ray crystal structures failed to reveal the basis of this selectivity. Joint X-ray and neutron crystallographic studies have shown active site residues, solvent, and H-bonding re-organization upon SAC and SGC binding. These observations highlighted the importance of residues 67 (Asn in CA II, Gln in CA IX) and 130 (Asp in CA II, Arg in CA IX) in selective CA inhibitor targeting.  相似文献   
34.
35.
36.
Endothelial cells are known to be metabolicallyrather robust. To study the mechanisms involved, porcine aorticendothelial cells (PAEC), cultured on microcarrier beads, were perfusedwith glucose (10 mM) or with substrate-free medium. Substrate-free perfusion for 2 h induced an almost complete loss of nucleoside triphosphates (31P-NMR) anddecreased heat flux, a measure of total energy turnover, by >90% inparallel microcalorimetric measurements. Heat flux and nucleosidetriphosphates recovered after addition of glucose. Because proteinsynthesis is a major energy consumer in PAEC, the rate of proteinsynthesis was measured([14C]leucineincorporation). Reduction or blockade of energy supply resulted in apronounced reduction in the rate of protein synthesis (up to 80%reduction). Intracellular triglyceride stores were decreased by ~60%after 2 h of substrate-free perfusion. Under basal perfusionconditions, PAEC released ~30 pmol purine · mg protein1 · min1,i.e., 16% of the cellular ATP per hour, while ATP remained constant. Substrate deprivation increased the release of various purines andpyrimidines about threefold and also induced a twofold rise in purinede novo synthesis([14C]formate). Theseresults demonstrate that PAEC are capable of recovering from extendedperiods of substrate deprivation. They can do so by a massivedownregulation of their energy expenditure, particularly proteinsynthesis, while at the same time using endogenous triglycerides assubstrates and upregulating purine de novo synthesis to compensate forthe loss of purines.  相似文献   
37.
Mammalian peroxisomes and reactive oxygen species   总被引:12,自引:5,他引:7  
The central role of peroxisomes in the generation and scavenging of hydrogen peroxide has been well known ever since their discovery almost four decades ago. Recent studies have revealed their involvement in metabolism of oxygen free radicals and nitric oxide that have important functions in intra- and intercellular signaling. The analysis of the role of mammalian peroxisomes in a variety of physiological and pathological processes involving reactive oxygen species (ROS) is the subject of this review. The general characteristics of peroxisomes and their enzymes involved in the metabolism of ROS are briefly reviewed. An expansion of the peroxisomal compartment with proliferation of tubular peroxisomes is observed in cells exposed to UV irradiation and various oxidants and is apparently accompanied by upregulation of PEX genes. Significant reduction of peroxisomes and their enzymes is observed in inflammatory processes including infections, ischemia-reperfusion injury, and allograft rejection and seems to be related to the suppressive effect of tumor necrosis factor- on peroxisome function and peroxisome proliferator activated receptor-. Xenobiotic-induced proliferation of peroxisomes in rodents is accompanied by the formation of hepatic tumors, and evidently the imbalance in generation and decomposition of ROS plays an important role in this process. In PEX5–/– knockout mice lacking functional peroxisomes severe alterations of mitochondria in various organs are observed which seem to be due to a generalized increase in oxidative stress confirming the important role of peroxisomes in homeostasis of ROS and the implications of its disturbances for cell pathology.  相似文献   
38.
39.
L-Arginine is a common substrate for the enzymes arginase and nitric oxide synthase (NOS). Acute inhibition of arginase enzyme activity improves endothelium-dependent vasorelaxation, presumably by increasing availability of substrate for NOS. Arginase is activated by manganese (Mn), and the consumption of a Mn-deficient (Mn-) diet can result in low arginase activity. We hypothesize that endothelium-dependent vasorelaxation is greater in rats fed Mn- versus Mn sufficient (Mn+) diets. Newly weaned rats fed Mn+ diets (0.5 microg Mn/g; n = 12) versus Mn+ diets (45 microg Mn/g; n = 12) for 44 +/- 3 days had (i) lower liver and kidney Mn and arginase activity (P < or = 0.05), (ii) higher plasma L-arginine (P < or = 0.05), (iii) similar plasma and urine nitrate + nitrite, and (iv) similar staining for endothelial nitric oxide synthase in thoracic aorta. Vascular reactivity of thoracic aorta (approximately 720 microm i.d.) and small coronary arteries (approximately 110 microm i.d.) was evaluated using wire myographs. Acetylcholine (ACh; 10(-8)-10(-4) M) produced greater (P < or = 0.05) vasorelaxation in thoracic aorta from Mn- rats (e.g., maximal percent relaxation, 79 +/- 7%) versus Mn + rats (e.g., maximal percent relaxation, 54 +/- 9%) at 5 of 7 evaluated doses. Tension produced by NOS inhibition using N(G) monomethyl-L-arginine (L-NMMA; 10(-3) M) and vasorelaxation evoked by (i) arginase inhibition using difluoromethylornithine (DFMO; 10(-7) M), (ii) ACh (10(-8)-10(-4) M) in the presence of DFMO, and (iii) sodium nitroprusside (10(-9)-10(-4) M) were unaffected by diet. No differences existed between groups concerning these responses in small coronary arteries. These findings support our hypothesis that endothelium-dependent vasorelaxation is greater in aortic segments from rats that consume Mn- versus Mn+ diets; however, responses from small coronary arteries were unaffected.  相似文献   
40.
Kv4 potassium channels regulate action potentials in neurons and cardiac myocytes. Co-expression of EF hand-containing Ca2+-binding proteins termed KChIPs with pore-forming Kv4 alpha subunits causes changes in the gating and amplitude of Kv4 currents (An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. (2000) Nature 403, 553-556). Here we show that KChIPs profoundly affect the intracellular trafficking and molecular properties of Kv4.2 alpha subunits. Co-expression of KChIPs1-3 causes a dramatic redistribution of Kv4.2, releasing intrinsic endoplasmic reticulum retention and allowing for trafficking to the cell surface. KChIP co-expression also causes fundamental changes in Kv4.2 steady-state expression levels, phosphorylation, detergent solubility, and stability that reconstitute the molecular properties of Kv4.2 in native cells. Interestingly, the KChIP4a isoform, which exhibits unique effects on Kv4 channel gating, does not exert these effects on Kv4.2 and negatively influences the impact of other KChIPs. We provide evidence that these KChIP effects occur through the masking of an N-terminal Kv4.2 hydrophobic domain. These studies point to an essential role for KChIPs in determining both the biophysical and molecular characteristics of Kv4 channels and provide a molecular basis for the dramatic phenotype of KChIP knockout mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号