首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   16篇
  157篇
  2021年   2篇
  2015年   5篇
  2013年   8篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   8篇
  2006年   3篇
  2005年   12篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  2001年   7篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   6篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1974年   1篇
  1964年   1篇
  1952年   1篇
  1951年   1篇
  1950年   2篇
  1949年   1篇
  1942年   1篇
  1935年   1篇
  1934年   1篇
  1929年   1篇
  1923年   2篇
  1922年   2篇
  1919年   2篇
  1914年   1篇
  1911年   1篇
  1910年   1篇
  1904年   1篇
  1897年   1篇
排序方式: 共有157条查询结果,搜索用时 0 毫秒
71.
Cobalamin and the native and diepimeric forms of factor F430 catalyzed the reductive dechlorination of 1,2-dichloroethane (1,2-DCA) to ethylene or chloroethane (CA) in a buffer with Ti(III) citrate as the electron donor. Ethylene was the major product in the cobalamin-catalyzed transformation, and the ratio of ethylene to CA formed was 25:1. Native F430 and 12,13-di-epi-F430 produced ethylene and CA in ratios of about 2:1 and 1:1, respectively. Cobalamin dechlorinated 1,2-DCA much faster than did factor F430. Dechlorination rates by all three catalysts showed a distinct pH dependence, correlated in a linear manner with the catalyst concentration and doubled with a temperature increase of 10 degrees C. Crude and boiled cell extracts of Methanosarcina barkeri also dechlorinated 1,2-DCA to ethylene and CA with Ti(III) citrate as the reductant. The catalytic components in boiled extracts were heat and oxygen stable and had low molecular masses. Fractionation of boiled extracts by a hydrophobic interaction column revealed that part of the dechlorinating components had a hydrophilic and part had a hydrophobic character. These chemical properties of the dechlorinating components and spectral analysis of boiled extracts indicated that corrinoids or factor F430 was responsible for the dechlorinations. The ratios of 3:1 to 7:1 of ethylene and CA formed by cell extracts suggested that both cofactors were concomitantly active.  相似文献   
72.
73.
74.
Biomass from dedicated crops is expected to contribute significantly to the replacement of fossil resources. However, sustainable bioenergy cropping systems must provide high biomass production and low environmental impacts. This study aimed at quantifying biomass production, nutrient removal, expected ethanol production, and greenhouse gas (GHG) balance of six bioenergy crops: Miscanthus × giganteus, switchgrass, fescue, alfalfa, triticale, and fiber sorghum. Biomass production and N, P, K balances (input‐output) were measured during 4 years in a long‐term experiment, which included two nitrogen fertilization treatments. These results were used to calculate a posteriori ‘optimized’ fertilization practices, which would ensure a sustainable production with a nil balance of nutrients. A modified version of the cost/benefit approach proposed by Crutzen et al. (2008), comparing the GHG emissions resulting from N‐P‐K fertilization of bioenergy crops and the GHG emissions saved by replacing fossil fuel, was applied to these ‘optimized’ situations. Biomass production varied among crops between 10.0 (fescue) and 26.9 t DM ha?1 yr?1 (miscanthus harvested early) and the expected ethanol production between 1.3 (alfalfa) and 6.1 t ha?1 yr?1 (miscanthus harvested early). The cost/benefit ratio ranged from 0.10 (miscanthus harvested late) to 0.71 (fescue); it was closely correlated with the N/C ratio of the harvested biomass, except for alfalfa. The amount of saved CO2 emissions varied from 1.0 (fescue) to 8.6 t CO2eq ha?1 yr?1 (miscanthus harvested early or late). Due to its high biomass production, miscanthus was able to combine a high production of ethanol and a large saving of CO2 emissions. Miscanthus and switchgrass harvested late gave the best compromise between low N‐P‐K requirements, high GHG saving per unit of biomass, and high productivity per hectare.  相似文献   
75.
76.
77.
Nutritional studies in laboratory animals have long shown that various dietary components can contribute to altered gene expression and metabolism, but diet alone has not been considered in whole animal genomic studies. In this study, global gene expression changes in mice fed either a non-purified chow or a purified diet were investigated and background metal levels in the two diets were measured by ICP-MS. C57BL/6J mice were raised for 5 weeks on either the cereal-based, non-purified LRD-5001 diet or the purified, casein-based AIN-76A diet, as part of a larger study examining the effects of low dose arsenic (As) in the diet or drinking water. Affymetrix Mouse Whole Genome 430 2.0 microarrays were used to assess gene expression changes in the liver and lung. Microarray analysis revealed that animals fed the LRD-5001 diet displayed a significantly higher hepatic expression of Phase I and II metabolism genes as well as other metabolic genes. The LRD-5001 diet masked the As-induced gene expression changes that were clearly seen in the animals fed the AIN-76A diet when each dietary group was exposed to 100 ppb As in drinking water. Trace metal analysis revealed that the LRD-5001 diet contained a mixture of inorganic and organic As at a total concentration of 390 ppb, while the AIN-76A diet contained approximately 20 ppb. These findings indicate that the use of non-purified diets may profoundly alter observable patterns of change induced by arsenic and, likely, by other experimental treatments, particularly, altering gene and protein expression.  相似文献   
78.
79.
Dendritic cells (DC) are professional antigen-presenting cells of the immune system that play a key role in regulating T cell-based immunity. In vivo, the capacity of DC to activate T cells depends on their ability to migrate to the T cell areas of lymph nodes as well as on their maturation state. Depending on their cytokine-secreting profile, DC are able to skew the immune response in a specific direction. In particular, IL-12p70 producing DC drive T cells towards a T helper 1 type response. A serious disadvantage of current clinical grade ex vivo generated monocyte-derived DC is the poor IL-12p70 production. We have investigated the effects of Toll-like receptor (TLR)-mediated maturation on ex vivo generated human monocyte-derived DC. We demonstrate that in contrast to cytokine-matured DC, DC matured with poly(I:C) (TLR3 ligand) and/or R848 (TLR7/8 ligand) are able to produce vast amounts of IL-12p70, but exhibit a reduced migratory capacity. The addition of prostaglandin E(2) (PGE(2)) improved the migratory capacity of TLR-ligand matured DC while maintaining their IL-12p70 production upon T cell encounter. We propose a novel clinical grade maturation protocol in which TLR ligands poly(I:C) and R848 are combined with PGE(2) to generate DC with both high migratory capacity and IL-12p70 production upon T cell encounter.  相似文献   
80.
Halorespiring microorganisms are not only able to oxidize organic electron donors such as formate, acetate, pyruvate and lactate, but also H(2). Because these microorganisms have a high affinity for H(2), this may be the most important electron donor for halorespiration in the environment. We have studied the role of H(2)-threshold concentrations in pure halorespiring cultures and compared them with mixed cultures and field data. We have found H(2)-threshold values between 0.05 and 0.08 nM for Sulfurospirillum halorespirans, S. multivorans and Dehalobacter restrictus under PCE-reducing and nitrate-reducing conditions. The reduction of PCE and TCE can proceed at H(2) concentrations of below 1 nM at a polluted site. However, for the reduction of lower chlorinated ethenes a higher H(2) concentration is required. This indicates that the measured H(2) concentration in situ can be an indicator of the extent of anaerobic reductive dechlorination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号