首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   935篇
  免费   67篇
  国内免费   1篇
  1003篇
  2023年   3篇
  2022年   6篇
  2021年   9篇
  2020年   9篇
  2019年   9篇
  2018年   15篇
  2017年   9篇
  2016年   29篇
  2015年   32篇
  2014年   32篇
  2013年   34篇
  2012年   76篇
  2011年   60篇
  2010年   36篇
  2009年   39篇
  2008年   50篇
  2007年   55篇
  2006年   58篇
  2005年   63篇
  2004年   49篇
  2003年   53篇
  2002年   41篇
  2001年   18篇
  2000年   12篇
  1999年   17篇
  1998年   15篇
  1997年   16篇
  1996年   17篇
  1995年   20篇
  1994年   17篇
  1993年   12篇
  1992年   5篇
  1991年   9篇
  1990年   9篇
  1989年   8篇
  1988年   9篇
  1987年   2篇
  1986年   9篇
  1985年   2篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1978年   4篇
  1975年   2篇
  1971年   3篇
  1965年   3篇
  1963年   1篇
  1930年   1篇
排序方式: 共有1003条查询结果,搜索用时 0 毫秒
81.
Sphingosine-1-phosphate (SPP) is a unique sphingolipid metabolite involved in cell growth regulation and signal transduction. SPP is formed from sphingosine in cells by the action of sphingosine kinase, an enzyme whose activity can be stimulated by growth factors. Little is known of the mechanisms by which sphingosine kinase is regulated. We found that acidic phospholipids, particularly phosphatidylserine, induced a dose-dependent increase in sphingosine kinase activity due to an increase in the apparent Vmax of the enzyme. Other acidic phospholipids, such as phosphatidylinositol, phosphatidic acid, phosphatidylinositol bisphosphate, and cardiolipin stimulated sphingosine kinase activity to a lesser extent than phosphatidylserine, whereas neutral phospholipids had no effect. Diacylglycerol, a structurally similar molecule which differs from phosphatidic acid in the absence of the phosphate group, failed to induce any changes in sphingosine kinase activity. Our results suggest that the presence of negative charges on the lipid molecules is important for the potentiation of sphingosine kinase activity, but the effect does not directly correlate with the number of negative charges. These results also support the notion that the polar group confers specificity in the stimulation of sphingosine kinase by acidic glycerophospholipids. The presence of a fatty acid chain in position 2 of the glycerol backbone was not critical since lysophosphatidylserine also stimulated sphingosine kinase, although it was somewhat less potent. Dioleoylphosphatidylserine was the most potent species, including a fourfold stimulation, whereas distearoyl phosphatidylserine was completely inactive. Thus, the degree of saturation of the fatty acid chain of the phospholipids may also play a role in the activation of sphingosine kinase. © 1996 Wiley-Liss, Inc.  相似文献   
82.
83.
The International Journal of Life Cycle Assessment - In Italy, composting olive mill waste has become a common practice, since it mitigates the environmental problems associated with spreading the...  相似文献   
84.
Dry grasslands are among the most threatened plant communities of Central Europe. We explore the time scale of spontaneous regeneration of dry grasslands on abandoned fields in an area of Central Europe, where also ancient grassland communities occur (Saxony-Anhalt, Germany). On three permanent plots with shallow soils we monitored during 10 years change of species composition and analysed whether spontaneous succession leads to assemblages similar to the ancient dry grassland communities in the direct surroundings. We found that dry grassland species are able to invade the permanent plots and during the 10 years of succession the number of dry grassland species increased. But even after 10 years there was a clear difference between ancient dry grassland communities and the assemblages on the permanent plots. Our findings suggest two important conclusions: First, spontaneous succession on abandoned fields is a cheap possibility for the conservation of some dry grassland species, at least on shallow soils. Second, the time scale of the regeneration process, however, is rather long. Hence, conservation of remnants of ancient grassland communities needs special attention.  相似文献   
85.
All members of the sulphotransferase (SOT, EC 2.8.2.-) protein family use 3'-phosphoadenosine 5'-phosphosulphate (PAPS) as the sulphuryl donor and transfer the sulphonate group to an appropriate hydroxyl group of several classes of substrates. These enzymes have highly conserved domains and can be found in eubacteria and eukaryotes. In mammals, sulphate conjugation catalysed by SOTs constitutes an important reaction in the transformation of xenobiotics, and in the modulation of the biological activity of steroid hormones and neurotransmitters. In plants, sulphate-conjugation reactions seem to play an important role in plant growth, development, and adaptation to stress. To date only a few plant SOTs have been characterized in detail. The flavonol 3- and 4'-SOTs from Flaveria species (Asteraceae), which catalyse the sulphonation of flavonol aglycones and flavonol 3-sulphates, respectively, were the first plant SOTs for which cDNA clones were isolated. The plasma membrane associated gallic acid SOT of Mimosa pudica L. pulvini cells may be intrinsic to signalling events that modify the seismonastic response. In Brassica napus L. a SOT catalyses the O-sulphonation of brassinosteroids and thereby abolishes specifically the biological activity of 24-epibrassinolide. The fully sequenced genome of Arabidopsis thaliana Heynh. contains in total 18 genes that are likely to encode SOT proteins based on sequence similarities of the translated products with an average identity of 51.1%. So far only one SOT from A. thaliana (At5g07000) was functionally characterized: the protein was shown to catalyse the sulphonation of 12-hydroxyjasmonate and thereby inactivate excess jasmonic acid in plants. The substrates and, therefore, the physiological roles of SOTs are very diverse. By using the numerous informative databases and methods available for the model plant A. thaliana, the elucidation of the functional role of the SOT protein family will be accelerated.  相似文献   
86.
A vast number of lakes developed in the abandoned opencast lignite mines of Lusatia (East Germany) contain acidic waters (mmolSm–2a). Potential Fe(III) reduction measured by the accumulation of Fe(II) during anoxic incubation yielded similar rates in both types of sediments, however, the responses towards the supplementation of Fe(III) and organic carbon were different. Sulfate reduction rates estimated with 35S-radiotracer were much lower in the slightly acidic sediment than in the pH-neutral sediment (156 v.s. 738mmolSO4 2–m–2a–1). However, sulfate reduction rates were increased by the addition of organic carbon. Severe limitation of sulfate-reducing bacteria under acidic conditions was also reflected by low most probable numbers (MPN). High MPN of acidophilic iron- and sulfur-oxidizing bacteria in acidic sediments indicated a high reoxidation potential. The results show that potentials for reductive processes are present in acidic sediments and that these are determined mainly by the availability of oxidants and organic matter.  相似文献   
87.
Studies on membrane vesicles from the kidney of Leucoraja erinacea suggested the sole presence of a sodium-D-glucose cotransporter type 1 involved in renal D-glucose reabsorption. For molecular characterization of this transport system, an mRNA library was screened with primers directed against conserved regions of human sglt1. A cDNA was cloned whose nucleotide and derived amino acid sequence revealed high homology to sodium glucose cotransporter 1 (SGLT1). Xenopus laevis oocytes injected with the respective cRNA showed sodium-dependent high-affinity uptake of D-glucose. Many positions considered functionally essential for sodium glucose cotransporter 1 (SGLT1) are also found in the skate protein. High conservation preferentially in transmembrane helices and small linking loops suggests early appearance and continued preservation of these regions. Larger loops, especially loop 13, which is associated with phlorizin binding, were more variable, as is the interaction with the specific inhibitor in various species. To study the intrarenal distribution of the transporter, a skate SGLT1-specific antibody was generated. In cryosections of skate kidney, various nephron segments could be differentiated by lectin staining. Immunoreaction with the antibody was observed in the proximal tubule segments PIa and PIIa, the early distal tubule, and the collecting tubule. Thus Leucoraja, in contrast to the mammalian kidney, employs only SGLT1 to reabsorb d-glucose in the early, as well as in the late segments of the proximal tubule and probably also in the late distal tubule (LDT). Thereby, it differs also partly from the kidney of the close relative Squalus acanthias, which uses SGLT2 in more distal proximal tubule segments but shows also expression in the later nephron parts.  相似文献   
88.
89.
90.
Metabolism and Plant Hormone Action During Clubroot Disease   总被引:2,自引:0,他引:2  
Infection of Brassicaceae with the obligate biotrophic pathogen Plasmodiophora brassicae results in the development of root galls (clubroots). During the transformation of a healthy root to a root gall a plethora of changes in primary and secondary metabolism occur. The upper part of an infected plant is retarded in growth due to redirection of assimilates from the shoot to the root. In addition, changes in the levels of plant growth regulators, especially auxins and cytokinins, contribute to the hypertrophy of infected roots. Also, defense reactions are manipulated after inoculation of suitable host plants with P. brassicae. This review summarizes our current knowledge on the changes in these parameters. A model is presented for how primary metabolism and secondary metabolism, including plant hormones, interact to induce clubroot formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号