首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8972篇
  免费   785篇
  国内免费   2篇
  9759篇
  2023年   41篇
  2022年   88篇
  2021年   194篇
  2020年   125篇
  2019年   148篇
  2018年   187篇
  2017年   185篇
  2016年   234篇
  2015年   455篇
  2014年   511篇
  2013年   633篇
  2012年   794篇
  2011年   740篇
  2010年   466篇
  2009年   453篇
  2008年   614篇
  2007年   543篇
  2006年   547篇
  2005年   494篇
  2004年   504篇
  2003年   363篇
  2002年   400篇
  2001年   113篇
  2000年   84篇
  1999年   91篇
  1998年   105篇
  1997年   70篇
  1996年   47篇
  1995年   31篇
  1994年   34篇
  1993年   40篇
  1992年   35篇
  1991年   25篇
  1990年   33篇
  1989年   27篇
  1988年   18篇
  1987年   17篇
  1986年   13篇
  1984年   20篇
  1983年   11篇
  1982年   15篇
  1980年   13篇
  1979年   12篇
  1978年   10篇
  1975年   10篇
  1973年   15篇
  1972年   10篇
  1971年   11篇
  1969年   12篇
  1968年   9篇
排序方式: 共有9759条查询结果,搜索用时 15 毫秒
101.
Pore-forming proteins insert from solution into membranes to create lesions, undergoing a structural rearrangement often accompanied by oligomerization. Lysenin, a pore-forming toxin from the earthworm Eisenia fetida, specifically interacts with sphingomyelin (SM) and may confer innate immunity against parasites by attacking their membranes to form pores. SM has important roles in cell membranes and lysenin is a popular SM-labeling reagent. The structure of lysenin suggests common ancestry with other pore-forming proteins from a diverse set of eukaryotes and prokaryotes. The complex with SM shows the mode of its recognition by a protein in which both the phosphocholine headgroup and one acyl tail are specifically bound. Lipid interaction studies and assays using viable target cells confirm the functional reliance of lysenin on this form of SM recognition.  相似文献   
102.
103.
104.
Sponges (phylum Porifera) live in a symbiotic relationship with microorganisms, primarily bacteria. Until now, molecular proof for the capacity of sponges to recognize fungi in the surrounding aqueous milieu has not been available. Here we demonstrate, for the demosponge Suberites domuncula (Porifera, Demospongiae, Hadromerida), a cell surface receptor that recognizes (1-->3)-beta-D-glucans, e.g. curdlan or laminarin. This receptor, the (1-->3)-beta-D-glucan-binding protein, was identified and its cDNA analysed. The gene coding for the 45 kDa protein was found to be upregulated in tissue after incubation with carbohydrate. Simultaneously with the increased expression of this gene, two further genes showed an elevated steady state level of expression; one codes for a fibrinogen-like protein and the other for the epidermal growth factor precursor. Expression of the (1-->3)-beta-D-glucan-binding protein and the fibrinogen-like protein occurred in cells on the sponge surface, in the pinacoderm. By Western blotting, the product of the fibrinogen-like protein gene was identified, the recombinant protein isolated, and antibodies raised to this protein. Their application revealed that a 5 kDa factor is produced, which is apparently processed from the 77 kDa epidermal growth factor precursor. Finally, we provided evidence that a tyrosine kinase pathway is initiated in response to exposure to D-glucan; its phosphorylation activity could be blocked by aeroplysinin. In turn, the increased expression of the downstream genes was suppressed. We conclude that sponges possess a molecular mechanism for recognizing fungi via the d-glucan carbohydrates on their surfaces.  相似文献   
105.
106.
The increase of induced gamma-band responses (iGBRs; oscillations >30 Hz) elicited by familiar (meaningful) objects is well established in electroencephalogram (EEG) research. This frequency-specific change at distinct locations is thought to indicate the dynamic formation of local neuronal assemblies during the activation of cortical object representations. As analytically power increase is just a property of a single location, phase-synchrony was introduced to investigate the formation of large-scale networks between spatially distant brain sites. However, classical phase-synchrony reveals symmetric, pair-wise correlations and is not suited to uncover the directionality of interactions. Here, we investigated the neural mechanism of visual object processing by means of directional coupling analysis going beyond recording sites, but rather assessing the directionality of oscillatory interactions between brain areas directly. This study is the first to identify the directionality of oscillatory brain interactions in source space during human object recognition and suggests that familiar, but not unfamiliar, objects engage widespread reciprocal information flow. Directionality of cortical information-flow was calculated based upon an established Granger-Causality coupling-measure (partial-directed coherence; PDC) using autoregressive modeling. To enable comparison with previous coupling studies lacking directional information, phase-locking analysis was applied, using wavelet-based signal decompositions. Both, autoregressive modeling and wavelet analysis, revealed an augmentation of iGBRs during the presentation of familiar objects relative to unfamiliar controls, which was localized to inferior-temporal, superior-parietal and frontal brain areas by means of distributed source reconstruction. The multivariate analysis of PDC evaluated each possible direction of brain interaction and revealed widespread reciprocal information-transfer during familiar object processing. In contrast, unfamiliar objects entailed a sparse number of only unidirectional connections converging to parietal areas. Considering the directionality of brain interactions, the current results might indicate that successful activation of object representations is realized through reciprocal (feed-forward and feed-backward) information-transfer of oscillatory connections between distant, functionally specific brain areas.  相似文献   
107.
Induction of the otic placode involves a number of regulatory interactions. Early studies revealed that the induction of this program is initiated by instructive signals from the mesendoderm as well as from the adjacent hindbrain. Further investigations on the molecular level identified in zebrafish Fgf3, Fgf8, Foxi1, Pax8, Dlx3b and Dlx4b genes as key players during the induction phase. Thereafter an increasing number of genes participates in the regulatory interactions finally resulting in a highly structured sensory organ. Based on data from zebrafish we selected medaka genes with presumptive functions during early ear development for an expression analysis. In addition we isolated Foxi1 and Dlx3b gene fragments from embryonic cDNA. Altogether we screened the spatio-temporal distribution of more than 20 representative marker genes for otic development in medaka embryos, with special emphasis on the early phases. Whereas the spatial distribution of these genes is largely conserved between medaka and zebrafish, our comparative analysis revealed several differences, in particular for the timing of expression.  相似文献   
108.

Objective

To explore the capacity of human CD14+CD16++ and CD14++CD16- monocytes to phagocyte iron-oxide nanoparticles in vitro.

Methods

Human monocytes were labeled with four different magnetic nanoparticle preparations (Ferumoxides, SHU 555C, CLIO-680, MION-48) exhibiting distinct properties and cellular uptake was quantitatively assessed by flow cytometry, fluorescence microscopy, atomic absorption spectrometry and Magnetic Resonance Imaging (MRI). Additionally we determined whether cellular uptake of the nanoparticles resulted in phenotypic changes of cell surface markers.

Results

Cellular uptake differed between the four nanoparticle preparations. However for each nanoparticle tested, CD14++CD16- monocytes displayed a significantly higher uptake compared to CD14+CD16++ monocytes, this resulted in significantly lower T1 and T2 relaxation times of these cells. The uptake of iron-oxide nanoparticles further resulted in a remarkable shift of expression of cell surface proteins indicating that the labeling procedure affects the phenotype of CD14+CD16++ and CD14++CD16- monocytes differently.

Conclusion

Human monocyte subsets internalize different magnetic nanoparticle preparations differently, resulting in variable loading capacities, imaging phenotypes and likely biological properties.  相似文献   
109.
In vertebrate eyes, images are projected onto an inverted retina where light passes all retinal layers on its way to the photoreceptor cells. Light scattering within this tissue should impair vision. We show that radial glial (Müller) cells in the living retina minimize intraretinal light scatter and conserve the diameter of a beam that hits a single Müller cell endfoot. Thus, light arrives at individual photoreceptors with high intensity. This leads to an optimized signal/noise ratio, which increases visual sensitivity and contrast. Moreover, we show that the ratio between Müller cells and cones-responsible for acute vision-is roughly 1. This suggests that high spatiotemporal resolution may be achieved by each cone receiving its part of the image via its individual Müller cell-light guide.  相似文献   
110.
Ribosome biogenesis in eukaryotic cells is a highly dynamic and complex process innately linked to cell proliferation. The assembly of ribosomes is driven by a myriad of biogenesis factors that shape pre‐ribosomal particles by processing and folding the ribosomal RNA and incorporating ribosomal proteins. Biochemical approaches allowed the isolation and characterization of pre‐ribosomal particles from Saccharomyces cerevisiae, which lead to a spatiotemporal map of biogenesis intermediates along the path from the nucleolus to the cytoplasm. Here, we cloned almost the entire set (~180) of ribosome biogenesis factors from the thermophilic fungus Chaetomium thermophilum in order to perform an in‐depth analysis of their protein–protein interaction network as well as exploring the suitability of these thermostable proteins for structural studies. First, we performed a systematic screen, testing about 80 factors for crystallization and structure determination. Next, we performed a yeast 2‐hybrid analysis and tested about 32,000 binary combinations, which identified more than 1000 protein–protein contacts between the thermophilic ribosome assembly factors. To exemplary verify several of these interactions, we performed biochemical reconstitution with the focus on the interaction network between 90S pre‐ribosome factors forming the ctUTP‐A and ctUTP‐B modules, and the Brix‐domain containing assembly factors of the pre‐60S subunit. Our work provides a rich resource for biochemical reconstitution and structural analyses of the conserved ribosome assembly machinery from a eukaryotic thermophile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号