首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2807篇
  免费   233篇
  2023年   14篇
  2022年   33篇
  2021年   63篇
  2020年   38篇
  2019年   49篇
  2018年   55篇
  2017年   50篇
  2016年   79篇
  2015年   120篇
  2014年   136篇
  2013年   185篇
  2012年   199篇
  2011年   221篇
  2010年   126篇
  2009年   126篇
  2008年   170篇
  2007年   177篇
  2006年   174篇
  2005年   147篇
  2004年   148篇
  2003年   126篇
  2002年   129篇
  2001年   26篇
  2000年   14篇
  1999年   31篇
  1998年   41篇
  1997年   26篇
  1996年   27篇
  1995年   28篇
  1994年   33篇
  1993年   22篇
  1992年   18篇
  1991年   28篇
  1990年   20篇
  1989年   13篇
  1988年   11篇
  1987年   12篇
  1986年   10篇
  1985年   14篇
  1984年   13篇
  1983年   11篇
  1982年   12篇
  1981年   8篇
  1980年   6篇
  1979年   9篇
  1978年   4篇
  1977年   7篇
  1974年   3篇
  1973年   3篇
  1971年   3篇
排序方式: 共有3040条查询结果,搜索用时 15 毫秒
61.
To study the effects of enhanced smooth muscle cell (SMC) proliferation on arterial vessel geometry in the absence of vessel trauma, we developed a transgenic mouse model expressing SV40 large T antigen under control of the 2.3-kb smooth muscle-myosin heavy chain promoter. Transgenic mice studied at ages from 3 to 13 wk showed a 3.2-fold increase in arterial wall SMC density, with 28% of SMC exhibiting proliferative cell nuclear antigen staining, confirming enhanced SMC proliferation, which was accompanied by two- to threefold increases in arterial wall areas (P < 0.05). Remarkably, despite increased vessel wall mass, the lumen area was not compromised, but rather was increased. A tightly conserved linear relationship was found between arterial circumference and wall thickness with slopes of 0.036 for both transgenics (r = 0.93, P < 0.01) and controls (r = 0.77, P < 0.01), suggesting the hypothesis that the conservation of wall stress functions as a primary determinant of adaptive arterial remodeling. This establishes a new model of adaptive vessel remodeling occurring in response to a proliferative input in the absence of mechanical injury or primary flow perturbation.  相似文献   
62.
The suspected carcinogen 1,2-dichloroethane (1,2-DCA) is the most abundant chlorinated C2 groundwater pollutant on earth. However, a reductive in situ detoxification technology for this compound does not exist. Although anaerobic dehalorespiring bacteria are known to catalyze several dechlorination steps in the reductive-degradation pathway of chlorinated ethenes and ethanes, no appropriate isolates that selectively and metabolically convert them into completely dechlorinated end products in defined growth media have been reported. Here we report on the isolation of Desulfitobacterium dichloroeliminans strain DCA1, a nutritionally defined anaerobic dehalorespiring bacterium that selectively converts 1,2-dichloroethane and all possible vicinal dichloropropanes and -butanes into completely dechlorinated end products. Menaquinone was identified as an essential cofactor for growth of strain DCA1 in pure culture. Strain DCA1 converts chiral chlorosubstrates, revealing the presence of a stereoselective dehalogenase that exclusively catalyzes an energy-conserving anti mechanistic dichloroelimination. Unlike any known dehalorespiring isolate, strain DCA1 does not carry out reductive hydrogenolysis reactions but rather exclusively dichloroeliminates its substrates. This unique dehalorespiratory biochemistry has shown promising application possibilities for bioremediation purposes and fine-chemical synthesis.  相似文献   
63.
An experimental set-up for acquiring metabolite and transient (13)C-labeling data in mammalian cells is presented. An efficient sampling procedure was established for hepatic cells cultured in six-well plates as a monolayer attached to collagen, which allowed simultaneous quenching of metabolism and extraction of the intracellular intermediates of interest. Extracellular concentrations of glucose, amino acids, lactate, pyruvate, and urea were determined by GC-MS procedures and were used for estimation of metabolic uptake and excretion rates. Sensitive LC-MS and GC-MS methods were used to quantify the intracellular intermediates of tricarboxylic acid cycle, glycolysis, and pentose phosphate pathway and for the determination of isotopomer fractions of the respective metabolites. Mass isotopomer fractions were determined in a transient (13)C-labeling experiment using (13)C-labeled glucose as substrate. The absolute amounts of intracellular metabolites were obtained from a non-labeled experiment carried out in exactly the same way as the (13)C-labeling experiment, except that the media contained naturally labeled glucose only. Estimation of intracellular metabolic fluxes from the presented data is addressed in part II of this contribution.  相似文献   
64.
65.
Over the last decade, a number of distinct mutations in the mtDNA (mitochondrial DNA) have been found to be associated with both syndromic and non-syndromic forms of hearing impairment. Their real incidence as a cause of deafness is poorly understood and generally underestimated. Among the known mtDNA mutations, the A1555G mutation in the 12S gene has been identified to be one of the most common genetic cause of deafness, and it has been described to be both associated to non-syndromic progressive SNHL (sensorineural hearing loss) and to aminoglycoside-induced SNHL. In the present study, we have investigated the presence of mtDNA alterations in patients affected by idiopathic non-syndromic SNHL, both familiar and sporadic, in order to evaluate the frequency of mtDNA alterations as a cause of deafness and to describe the audiological manifestations of mitochondrial non-syndromic SNHL. In agreement with previous studies, we found the A1555G mutation to be responsible for a relevant percentage (5.4%) of cases affected with isolated idiopathic sensorineural hearing impairment.  相似文献   
66.
Spatial self-organization is a hallmark of surface-associated microbial communities that is governed by local environmental conditions and further modified by interspecific interactions. Here, we hypothesize that spatial patterns of microbial cell-types can stabilize the composition of cross-feeding microbial communities under fluctuating environmental conditions. We tested this hypothesis by studying the growth and spatial self-organization of microbial co-cultures consisting of two metabolically interacting strains of the bacterium Pseudomonas stutzeri. We inoculated the co-cultures onto agar surfaces and allowed them to expand (i.e. range expansion) while fluctuating environmental conditions that alter the dependency between the two strains. We alternated between anoxic conditions that induce a mutualistic interaction and oxic conditions that induce a competitive interaction. We observed co-occurrence of both strains in rare and highly localized clusters (referred to as “spatial jackpot events”) that persist during environmental fluctuations. To resolve the underlying mechanisms for the emergence of spatial jackpot events, we used a mechanistic agent-based mathematical model that resolves growth and dispersal at the scale relevant to individual cells. While co-culture composition varied with the strength of the mutualistic interaction and across environmental fluctuations, the model provides insights into the formation of spatially resolved substrate landscapes with localized niches that support the co-occurrence of the two strains and secure co-culture function. This study highlights that in addition to spatial patterns that emerge in response to environmental fluctuations, localized spatial jackpot events ensure persistence of strains across dynamic conditions.Subject terms: Microbial ecology, Biofilms  相似文献   
67.
L1 is among the few adhesion molecules that favors repair after trauma in the adult central nervous system of vertebrates by promoting neuritogenesis and neuronal survival, among other beneficial features. In the peripheral nervous system, L1 is up-regulated in Schwann cells and regrowing axons after nerve damage, but the functional consequences of this expression remain unclear. Our previous study of L1-deficient mice in a femoral nerve injury model showed an unexpected improved functional recovery, attenuated motoneuronal cell death, and enhanced Schwann cell proliferation, being attributed to the persistent synthesis of neurotrophic factors. On the other hand, transgenic mice over-expressing L1 in neurons led to improved remyelination, but not improved functional recovery. The present study was undertaken to investigate whether the monoclonal L1 antibody 557 that triggers beneficial L1 functions in vitro would trigger these also in femoral nerve repair. We analyzed femoral nerve regeneration in C57BL/6J mice that received this antibody in a hydrogel filled conduit connecting the cut and sutured nerve before its bifurcation, leading to short-term release of antibody by diffusion. Video-based quantitative analysis of motor functions showed improved recovery when compared to mice treated with conduits containing PBS in the hydrogel scaffold, as a vehicle control. This improved recovery was associated with attenuated motoneuron loss, remyelination and improved precision of preferential motor reinnervation. We suggest that function-triggering L1 antibodies applied to the lesion site at the time of injury over a limited time period will not only be beneficial in peripheral, but also central nervous system regeneration.  相似文献   
68.
The engineering of large-scale decentralised systems requires sound methodologies to guarantee the attainment of the desired macroscopic system-level behaviour given the microscopic individual-level implementation. While a general-purpose methodology is currently out of reach, specific solutions can be given to broad classes of problems by means of well-conceived design patterns. We propose a design pattern for collective decision making grounded on experimental/theoretical studies of the nest-site selection behaviour observed in honeybee swarms (Apis mellifera). The way in which honeybee swarms arrive at consensus is fairly well-understood at the macroscopic level. We provide formal guidelines for the microscopic implementation of collective decisions to quantitatively match the macroscopic predictions. We discuss implementation strategies based on both homogeneous and heterogeneous multiagent systems, and we provide means to deal with spatial and topological factors that have a bearing on the micro-macro link. Finally, we exploit the design pattern in two case studies that showcase the viability of the approach. Besides engineering, such a design pattern can prove useful for a deeper understanding of decision making in natural systems thanks to the inclusion of individual heterogeneities and spatial factors, which are often disregarded in theoretical modelling.  相似文献   
69.
70.
Bisulfite compounds are shown to be nonspecific inhibitors ofphotosynthetic processes and of ion transport in green tissues.CO2 fixation and light-dependent transient changes in externalpH are inhibited about 50% by 5x10–4 M glyoxal-Na-bisulfite.Chloride uptake in the light and in the dark is inhibited tothe same extent at this concentration. At 5x10–3 M theinhibitor reduces ATP levels in the light and in the dark, andeffects on glycolate oxidase and PEP carboxylase are observed.The extent of inhibition is dependent on time of treatment withglyoxal-Na-bisulfite and freshly prepared NaHSO3 is equallyas effective as the addition compound. Possible explanations of the bisulfite effects and the relationshipsto SO2 effects on photosynthesis are discussed. (Received September 1, 1971; )  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号