首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   786篇
  免费   74篇
  2022年   7篇
  2021年   7篇
  2020年   5篇
  2019年   8篇
  2018年   16篇
  2017年   8篇
  2016年   14篇
  2015年   25篇
  2014年   22篇
  2013年   26篇
  2012年   39篇
  2011年   32篇
  2010年   31篇
  2009年   27篇
  2008年   21篇
  2007年   32篇
  2006年   27篇
  2005年   28篇
  2004年   18篇
  2003年   34篇
  2002年   31篇
  2001年   30篇
  2000年   21篇
  1999年   26篇
  1998年   10篇
  1997年   10篇
  1996年   13篇
  1995年   9篇
  1994年   5篇
  1993年   5篇
  1992年   23篇
  1991年   11篇
  1990年   16篇
  1989年   17篇
  1988年   6篇
  1987年   21篇
  1986年   12篇
  1985年   20篇
  1984年   8篇
  1983年   9篇
  1982年   8篇
  1980年   5篇
  1979年   12篇
  1977年   6篇
  1975年   12篇
  1974年   10篇
  1973年   6篇
  1971年   9篇
  1970年   5篇
  1969年   6篇
排序方式: 共有860条查询结果,搜索用时 187 毫秒
61.
In this paper we develop a novel discrete, individual-based mathematical model to investigate the effect of parasitoid foraging strategies on the spatial and temporal dynamics of host-parasitoid systems. The model is used to compare na?ve or random search strategies with search strategies that depend on experience and sensitivity to semiochemicals in the environment. It focuses on simple mechanistic interactions between individual hosts, parasitoids, and an underlying field of a volatile semiochemical (emitted by the hosts during feeding) which acts as a chemoattractant for the parasitoids. The model addresses movement at different spatial scales, where scale of movement also depends on the internal state of an individual. Individual interactions between hosts and parasitoids are modelled at a discrete (micro-scale) level using probabilistic rules. The resulting within-generation dynamics produced by these interactions are then used to generate the population levels for successive generations. The model simulations examine the effect of various key parameters of the model on (i) the spatio-temporal patterns of hosts and parasitoids within generations; (ii) the population levels of the hosts and parasitoids between generations. Key results of the model simulations show that the following model parameters have an important effect on either the development of patchiness within generations or the stability/instability of the population levels between generations: (i) the rate of diffusion of the kairomones; (ii) the specific search strategy adopted by the parasitoids; (iii) the rate of host increase between successive generations. Finally, evolutionary aspects concerning competition between several parasitoid subpopulations adopting different search strategies are also examined.  相似文献   
62.
We outline a scheme for the way in which early vision may handle information about shading (luminance modulation, LM) and texture (contrast modulation, CM). Previous work on the detection of gratings has found no sub-threshold summation, and no cross-adaptation, between LM and CM patterns. This strongly implied separate channels for the detection of LM and CM structure. However, we now report experiments in which adapting to LM (or CM) gratings creates tilt aftereffects of similar magnitude on both LM and CM test gratings, and reduces the perceived strength (modulation depth) of LM and CM gratings to a similar extent. This transfer of aftereffects between LM and CM might suggest a second stage of processing at which LM and CM information is integrated. The nature of this integration, however, is unclear and several simple predictions are not fulfilled. Firstly, one might expect the integration stage to lose identity information about whether the pattern was LM or CM. We show instead that the identity of barely detectable LM and CM patterns is not lost. Secondly, when LM and CM gratings are combined in-phase or out-of-phase we find no evidence for cancellation, nor for 'phase-blindness'. These results suggest that information about LM and CM is not pooled or merged--shading is not confused with texture variation. We suggest that LM and CM signals are carried by separate channels, but they share a common adaptation mechanism that accounts for the almost complete transfer of perceptual aftereffects.  相似文献   
63.
Site-directed mutagenesis of active site residues of deacetoxycephalosporin C synthase active site residues was carried out to investigate their role in catalysis. The following mutations were made and their effects on the conversion of 2-oxoglutarate and the oxidation of penicillin N or G were assessed: M180F, G299N, G300N, Y302S, Y302F/G300A, Y302E, Y302H, and N304A. The Y302S, Y302E, and Y302H mutations reduced 2-oxoglutarate conversions and abolished (<2%) penicillin G oxidation. The Y302F/G300A mutation caused partial uncoupling of penicillin G oxidation from 2-oxoglutarate conversion, but did not uncouple penicillin N oxidation from 2-oxoglutarate conversion. Met-180 is involved in binding 2-oxoglutarate, and the M180F mutation caused uncoupling of 2-oxoglutarate from penicillin oxidation. The N304A mutation apparently enhanced in vitro conversion of penicillin N but had little effect on the oxidation of penicillin G, under standard assay conditions.  相似文献   
64.
65.
Tritrichomonas foetus was shown to undergo a regulatory volume increase (RVI) when it was subjected to hyperosmotic challenge, but there was no regulatory volume decrease after hypoosmotic challenge, as determined by using both light-scattering methods and measurement of intracellular water space to monitor cell volume. An investigation of T. foetus intracellular amino acids revealed a pool size (65 mM) that was similar to that of Trichomonas vaginalis but was considerably smaller than those of Giardia intestinalis and Crithidia luciliae. Changes in amino acid concentrations in response to hyperosmotic challenge were found to account for only 18% of the T. foetus RVI. The T. foetus intracellular sodium and potassium concentrations were determined to be 35 and 119 mM, respectively. The intracellular K(+) concentration was found to increase considerably during exposure to hyperosmotic stress, and, assuming that there was a monovalent accompanying anion, this increase was estimated to account for 87% of the RVI. By using light scattering it was determined that the T. foetus RVI was enhanced by elevated external K(+) concentrations and was inhibited when K(+) and/or Cl(-) was absent from the medium. The results suggested that the well-documented Na(+)-K(+)-2Cl(-) cotransport system was responsible for the K(+) influx activated during the RVI. However, inhibitors of Na(+)-K(+)-2Cl(-) cotransport in other systems, such as quinine, ouabain, furosemide, and bumetanide, had no effect on the RVI or K(+) influx in T. foetus.  相似文献   
66.
67.

Background  

Choriocarcinoma is an aggressive neoplasm arising in the body of the uterus. The disease normally spreads to lung and brain.  相似文献   
68.
69.
The molecular mechanisms that control the ordered patterning of vascular tissue development in plants are not well understood. Several models propose a two-component system for vascular differentiation. These components include an inducer of vascular tissue development and an inhibitor that prevents the formation of vascular bundles near pre-existing bundles. We have identified two recessive allelic mutants in Arabidopsis, designated continuous vascular ring (cov1), that display a dramatic increase in vascular tissue development in the stem in place of the interfascicular region that normally separates the vascular bundles. The mutant plants exhibited relatively normal vascular patterning in leaves and cotyledons. Analysis of the interaction of cov1 with a known auxin signalling mutant and direct analysis of auxin concentrations suggests that cov1 affects vascular pattering by some mechanism that is independent of auxin. The COV1 protein is predicted to be an integral membrane protein of unknown function, highly conserved between plants and bacteria. In plants, COV1 is likely to be involved in a mechanism that negatively regulates the differentiation of vascular tissue in the stem.  相似文献   
70.
CCE1 is a DNA junction-resolving enzyme of Saccharomyces cerevisiae. Such enzymes are required to make two symmetrically paired cleavages in order to resolve the four-way junction productively. Using a cruciform assay, we show here that CCE1 introduces two unilateral cleavages in a sequential manner. This requires that the protein remains bound to the junction, preventing branch migration of the point of strand exchange. From a detailed kinetic analysis, we find that the CCE1 cleavage at a given site is accelerated by a factor of 5-10 when it occurs subsequently to the initial cleavage. These properties ensure a productive resolution of the four-way junction and may be general for junction-resolving enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号