首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   30篇
  2020年   4篇
  2019年   4篇
  2018年   2篇
  2017年   8篇
  2016年   9篇
  2015年   8篇
  2014年   17篇
  2013年   7篇
  2012年   17篇
  2011年   19篇
  2010年   19篇
  2009年   11篇
  2008年   13篇
  2007年   15篇
  2006年   10篇
  2005年   12篇
  2004年   7篇
  2003年   7篇
  2002年   8篇
  2001年   9篇
  2000年   8篇
  1999年   11篇
  1998年   10篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   4篇
  1974年   2篇
  1973年   5篇
  1972年   4篇
  1971年   7篇
  1970年   4篇
  1969年   2篇
  1968年   4篇
  1967年   1篇
  1966年   1篇
  1933年   1篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
21.
In the present study, we combined transient temperature and light stress (sunfleck) and comparably analyzed photosynthetic gas exchange in Grey poplar which has been genetically modified in isoprene emission capacity. Overall, we demonstrate that for poplar leaves the ability to emit isoprene is crucial to maintain photosynthesis when exposed to sunflecks. Net CO2 assimilation and electron transport rates were strongly impaired in sunfleck-treated non-isoprene emitting poplars. Similar impairment was not detected when the leaves were exposed to high light (lightflecks) only. Within 10 h non-isoprene emitting poplars recovered from sunfleck-related impairment as indicated by chlorophyll fluorescence and microarray analysis. Unstressed leaves of non-isoprene emitting poplars had higher ascorbate contents, but also higher contents of malondialdehyde than wild-type. Microarray analyses revealed lipid and chlorophyll degradation processes in the non-isoprene emitting poplars. Thus, there is evidence for an adjustment of the antioxidative system in the non-isoprene emitting poplars even under normal growth conditions.  相似文献   
22.
Herpes simplex viruses (HSVs) display affinity for cell-surface heparan sulfate proteoglycans with biological relevance in virus entry. Here, we exploit an approach to inhibiting HSV infection by using a sulfated fucoidan, and a guluronic acid-rich alginate derived from Sargassum tenerrimum, mimicking the active domain of the entry receptor. These macromolecules have apparent molecular masses of 30 ± 5 and 26 ± 5 kDa, respectively. They and their chemically sulfated derivatives showed activity against herpes simplex virus type 1 (HSV-1). Their inhibitory concentration 50% (IC50) values were in the range 0.5–15 μg/ml and they lacked cytotoxicity at concentrations up to 1000 μg/ml. The anti-HSV activity increased with increasing sulfate ester content. Our results suggest the feasibility of inhibiting HSV infection by blocking viral entry with polysaccharide having specific structure.  相似文献   
23.
During gestation there is a high demand for the essential nutrient choline. Adult rats supplemented with choline during embryonic days (E) 11-17 have improved memory performance and do not exhibit age-related memory decline, whereas prenatally choline-deficient animals have memory deficits. Choline, via betaine, provides methyl groups for the production of S-adenosylmethionine, a substrate of DNA methyltransferases (DNMTs). We describe an apparently adaptive epigenomic response to varied gestational choline supply in rat fetal liver and brain. S-Adenosylmethionine levels increased in both organs of E17 fetuses whose mothers consumed a choline-supplemented diet. Surprisingly, global DNA methylation increased in choline-deficient animals, and this was accompanied by overexpression of Dnmt1 mRNA. Previous studies showed that the prenatal choline supply affects the expression of multiple genes, including insulin-like growth factor 2 (Igf2), whose expression is regulated in a DNA methylation-dependent manner. The differentially methylated region 2 of Igf2 was hypermethylated in the liver of E17 choline-deficient fetuses, and this as well as Igf2 mRNA levels correlated with the expression of Dnmt1 and with hypomethylation of a regulatory CpG within the Dnmt1 locus. Moreover, mRNA expression of brain and liver Dnmt3a and methyl CpG-binding domain 2 (Mbd2) protein as well as cerebral Dnmt3l was inversely correlated to the intake of choline. Thus, choline deficiency modulates fetal DNA methylation machinery in a complex fashion that includes hypomethylation of the regulatory CpGs within the Dnmt1 gene, leading to its overexpression and the resultant increased global and gene-specific (e.g. Igf2) DNA methylation. These epigenomic responses to gestational choline supply may initiate the long term developmental changes observed in rats exposed to varied choline intake in utero.  相似文献   
24.

Background

Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults.

Methods

We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts.

Results

We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P = 0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P = 0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P < 0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P = 0.09).

Conclusions

Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0238-y) contains supplementary material, which is available to authorized users.  相似文献   
25.
The effect of (a) increasing velocity and (b) added resistance was examined on the stroke (stroke length, stroke rate [SR]), coordination (index of coordination [IdC], propulsive phases), and force (impulse and peaks) parameters of 7 national-level front crawl swimmers (17.14 ± 2.73 years of swimming; 57.67 ± 1.62 seconds in the 100-m freestyle). The additional resistance was provided by a specially designed parachute. Parachute swimming (PA) and free-swimming (F) conditions were compared at 5 velocities per condition. Video footage was used to calculate the stroke and coordination parameters, and sensors allowed the determination of force parameters. The results showed that (a) an increase in velocity (V) led to increases in SR, IdC, propulsive phase duration, and peak propulsive force (p < 0.05), but no significant change in force impulse per cycle, whatever the condition (PA or F); and (b) in PA conditions, significant increases in the IdC, propulsive phase duration, and force impulse and a decrease in SR were recorded at high velocities (p < 0.05). These results indicated that, in the F condition, swimmers adapted to the change in velocity by modifying stroke and coordination rather than force parameters, whereas the PA condition enhanced the continuity of propulsive action and force development. Added resistance, that is, "parachute training," can be used for specific strength training purposes as long as swimming is performed near maximum velocity.  相似文献   
26.

Background

Cholinergic projection from the septum to the hippocampus is crucial for normal cognitive function and degeneration of cells and nerve fibers within the septohippocampal pathway contributes to the pathophysiology of Alzheimer''s disease. Bone morphogenetic protein (BMP) 9 is a cholinergic differentiating factor during development both in vivo and in vitro.

Methodology/Principal Findings

To determine whether BMP9 could protect the adult cholinergic septohippocampal pathway from axotomy-evoked loss of the cholinergic phenotype, we performed unilateral fimbria-fornix transection in mice and treated them with a continuous intracerebroventricular infusion of BMP9 for six days. The number of choline acetyltransferase (CHAT)-positive cells was reduced by 50% in the medial septal nucleus ipsilateral to the lesion as compared to the intact, contralateral side, and BMP9 infusion prevented this loss in a dose-dependent manner. Moreover, BMP9 prevented most of the decline of hippocampal acetylcholine levels ipsilateral to the lesion, and markedly increased CHAT, choline transporter CHT, NGF receptors p75 (NGFR-p75) and TrkA (NTRK1), and NGF protein content in both the lesioned and unlesioned hippocampi. In addition, BMP9 infusion reduced bilaterally hippocampal levels of basic FGF (FGF2) protein.

Conclusions/Significance

These data indicate that BMP9 administration can prevent lesion-evoked impairment of the cholinergic septohippocampal neurons in adult mice and, by inducing NGF, establishes a trophic environment for these cells.  相似文献   
27.
Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥ 130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥ 130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds.  相似文献   
28.
29.
30.
Treatment of metastatic melanoma is a challenge for clinicians as most agents have failed to demonstrate improved survival in phase III trials. Despite the immunogenicity of this tumor entity, different immunological interventions including cytokine therapy, vaccination, biochemotherapy or allogeneic hematopoietic cell transplantation did not lead to a satisfactory response. However, continuous investigation on the immune mediated rejection of melanoma cells has led to the development of effective antibodies blocking cytotoxic T-lymphocyte antigen-4 (CTLA-4), a critical negative regulator of the antitumor T-cell response. Based on data from rodent models, the anti-CTLA-4 antibody ipilimumab was developed into clinical studies where it had encouraging activity in advanced melanoma with unusual response patterns. As in most immunostimulatory therapies, acute toxicities were severe and clearly mechanism-related. Although some patients developed signs of autoimmunity, the toxicities were overall manageable and mostly reversible. This review summarizes different immunotherapeutical approaches against melanoma that have been applied in the past and focuses on CTLA-4 blockade with respect to its mechanism, clinical effectiveness and immunological side effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号