首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   68篇
  国内免费   6篇
  2022年   4篇
  2021年   7篇
  2019年   6篇
  2018年   10篇
  2017年   6篇
  2016年   6篇
  2015年   20篇
  2014年   8篇
  2013年   22篇
  2012年   23篇
  2011年   24篇
  2010年   19篇
  2009年   15篇
  2008年   13篇
  2007年   18篇
  2006年   20篇
  2005年   15篇
  2004年   20篇
  2003年   22篇
  2002年   22篇
  2001年   17篇
  2000年   20篇
  1999年   9篇
  1998年   10篇
  1997年   7篇
  1996年   4篇
  1995年   7篇
  1994年   5篇
  1993年   3篇
  1992年   9篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1977年   3篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1970年   4篇
  1969年   2篇
  1968年   2篇
  1961年   1篇
  1952年   1篇
  1950年   1篇
排序方式: 共有461条查询结果,搜索用时 15 毫秒
451.
A novel method for the directional cloning of native PCR products was developed. Abasic sites in DNA templates make DNA polymerases stall at the site during synthesis of the complementary strand. Since the 5′ ends of PCR product strands contain built-in amplification primers, abasic sites within the primers result in the formation of 5′ single-stranded overhangs at the ends of the PCR product, enabling its direct ligation to a suitably cleaved cloning vector without any further modification. This “autosticky PCR” (AS-PCR) overcomes the problems caused by end sensitivity of restriction enzymes, or internal restriction sites within the amplified sequences, and enables the generation of essentially any desired 5′ overhang. Received: 11 August 1998 / Accepted: 2 October 1998  相似文献   
452.
The HPr kinase of Gram-positive bacteria is an ATP-dependent serine protein kinase, which phosphorylates the HPr protein of the bacterial phosphotransferase system (PTS) and is involved in the regulation of carbohydrate metabolism. The hprK gene from Enterococcus faecalis was cloned via polymerase chain reaction (PCR) and sequenced. The deduced amino acid sequence was confirmed by microscale Edman degradation and mass spectrometry combined with collision-induced dissociation of tryptic peptides derived from the HPr kinase of E. faecalis . The gene was overexpressed in Escherichia coli , which does not contain any ATP-dependent HPr kinase or phosphatase activity. The homogeneous recombinant protein exhibits the expected HPr kinase activity as well as a P-Ser-HPr phosphatase activity, which was assumed to be a separate enzyme activity. The bifunctional HPr kinase/phosphatase acts preferentially as a kinase at high ATP levels of 2 mM occurring in glucose-metabolizing Streptococci . At low ATP levels, the enzyme hydrolyses P-Ser-HPr. In addition, high concentrations of phosphate present under starvation conditions inhibit the HPr kinase activity. Thus, a putative function of the enzyme may be to adjust the ratio of HPr and P-Ser-HPr according to the metabolic state of the cell; P-Ser-HPr is involved in carbon catabolite repression and regulates sugar uptake via the phosphotransferase system (PTS). Reinvestigation of the previously described Bacillus subtilis HPr kinase revealed that it also possesses P-Ser-HPr phosphatase activity. However, contrary to the E. faecalis enzyme, ATP alone was not sufficient to switch the phosphatase activity of the B. subtilis enzyme to the kinase activity. A change in activity of the B. subtilis HPr kinase was only observed when fructose-1,6-bisphosphate was also present.  相似文献   
453.

Background  

Radiotherapy outcomes are usually predicted using the Linear Quadratic model. However, this model does not integrate complex features of tumor growth, in particular cell cycle regulation.  相似文献   
454.
455.
Using human red cell ghosts, it was shown that external phlorizin inhibits Cl and I equilibrium exchange. Internal phlorizin has little effect on I exchange and no detectable effect on Cl exchange. This asymmetry is similar to that observed with the much more slowly exchanging SO42− and different from that of sugars like l-arabinose or d-xylose which are inhibited by phlorizin from either surface.  相似文献   
456.
457.
The soft-bodied cephalopods including octopus, cuttlefish, and squid are broadly considered to be the most cognitively advanced group of invertebrates. Previous research has demonstrated that these large-brained molluscs possess a suite of cognitive attributes that are comparable to those found in some vertebrates, including highly developed perception, learning, and memory abilities. Cephalopods are also renowned for performing sophisticated feats of flexible behaviour, which have led to claims of complex cognition such as causal reasoning, future planning, and mental attribution. Hypotheses to explain why complex cognition might have emerged in cephalopods suggest that a combination of predation, foraging, and competitive pressures are likely to have driven cognitive complexity in this group of animals. Currently, it is difficult to gauge the extent to which cephalopod behaviours are underpinned by complex cognition because many of the recent claims are largely based on anecdotal evidence. In this review, we provide a general overview of cephalopod cognition with a particular focus on the cognitive attributes that are thought to be prerequisites for more complex cognitive abilities. We then discuss different types of behavioural flexibility exhibited by cephalopods and, using examples from other taxa, highlight that behavioural flexibility could be explained by putatively simpler mechanisms. Consequently, behavioural flexibility should not be used as evidence of complex cognition. Fortunately, the field of comparative cognition centres on designing methods to pinpoint the underlying mechanisms that drive behaviours. To illustrate the utility of the methods developed in comparative cognition research, we provide a series of experimental designs aimed at distinguishing between complex cognition and simpler alternative explanations. Finally, we discuss the advantages of using cephalopods to develop a more comprehensive reconstruction of cognitive evolution.  相似文献   
458.
459.
460.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号