首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   81篇
  国内免费   6篇
  2022年   2篇
  2021年   10篇
  2019年   6篇
  2018年   11篇
  2017年   11篇
  2016年   11篇
  2015年   23篇
  2014年   11篇
  2013年   20篇
  2012年   29篇
  2011年   27篇
  2010年   28篇
  2009年   21篇
  2008年   21篇
  2007年   24篇
  2006年   23篇
  2005年   15篇
  2004年   22篇
  2003年   25篇
  2002年   23篇
  2001年   22篇
  2000年   21篇
  1999年   10篇
  1998年   19篇
  1997年   13篇
  1996年   8篇
  1995年   8篇
  1994年   7篇
  1993年   9篇
  1992年   9篇
  1991年   5篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1978年   2篇
  1977年   4篇
  1975年   2篇
  1973年   4篇
  1970年   4篇
  1969年   2篇
  1968年   2篇
  1961年   1篇
  1952年   1篇
  1950年   1篇
排序方式: 共有568条查询结果,搜索用时 328 毫秒
41.
Presentation of MHC class I-restricted peptides by dendritic cells (DCs) can elicit vigorous antigen-specific CTL responses in vivo. It is well established, however, that T cell help can augment CTL function, raising the question of how best to present tumor-associated MHC class I epitopes to induce effective tumor immunity. To this end, we have examined the role of MHC class II peptide-complexes present on the immunizing DCs in a murine melanoma model. To present MHC class I- and II-restricted Ags reliably on the same cell, we retrovirally transduced bone marrow-derived DCs with the model Ag OVA encoding well-defined class I- and II-restricted epitopes. The importance of CD4+ T cells activated by the immunizing DCs in this model is demonstrated by the following findings: 1) transduced DCs presenting class I and class II epitopes are more efficient than class I peptide-pulsed DCs; 2) MHC class II-deficient DCs fail to induce tumor protection; 3) CD4+ T cell depletion abolishes induction of tumor protection; and 4) DCs presenting bovine serum Ags are more effective in establishing tumor immunity than DCs cultured in syngeneic serum. When MHC class II-deficient DCs were directly activated via their CD40 receptor, we indeed observed a moderate elevation of OVA-specific CTL activity. However, this increase in CTL activity was not sufficient to induce in vivo tumor rejection. Thus, our results demonstrate the potency of genetically modified DCs that express both MHC class I and II epitopes, but caution against the use of DCs presenting only the former.  相似文献   
42.
Three strains of Sphingomonas were grown as biofilms and tested for binding of five fluorescently labeled lectins (Con A-type IV-TRITC or -Cy5, Pha-E-TRITC, PNA-TRITC, UEA 1-TRITC, and WGA-Texas red). Only ConA and WGA were significantly bound by the biofilms. Binding of the five lectins to artificial biofilms made of the commercially available Sphingomonas extracellular polysaccharides was similar to binding to living biofilms. Staining of the living and artificial biofilms by ConA might be explained as binding of the lectin to the terminal mannosyl and terminal glucosyl residues in the polysaccharides secreted by Sphingomonas as well as to the terminal mannosyl residue in glycosphingolipids. Staining of the biofilms by WGA could only be explained as binding to the Sphingomonas glycosphingolipid membrane, binding to the cell wall, or nonspecific binding. Glycoconjugation of ConA and WGA with the target sugars glucose and N-acetylglucosamine, respectively, was used as a method for evaluation of the specificity of the lectins towards Sphingomonas biofilms and Sphingomonas polysaccharides. Our results show that the binding of lectins to biofilms does not necessarily prove the presence of specific target sugars in the extracellular polymeric substances (EPS) in biofilms. The lectins may bind to non-EPS targets or adhere nonspecifically to components of the biofilm matrix.  相似文献   
43.
Localization of iron-reducing activity in paddy soilby profile studies   总被引:3,自引:0,他引:3  
Profiles of iron speciations (porewaterFe(II) and Fe(III), solid-phase Fe(II) andFe(III)) have been studied to localize both ironreduction and oxidation in flooded paddy soil. Sulfateand nitrate were determined to analyze interactions ofredox reactions involved in the iron cycle with thoseof the sulfur and nitrogen cycle. The development ofthe iron(II) and iron(III) profiles was observed inmicroscale over a time period of 11 weeks. After 11weeks the profiles were stable and showed lowestconcentrations of solid-phase iron(II) on the soilsurface with increasing concentrations to a soil depthof 10 mm ( 100 µmol/cm3). Profilesof iron(III) showed a maximum of iron(III) at a depthof 2 to 4 mm ( 100--200 µmol/cm3).Porewater iron(II) concentrations were three orders ofmagnitude lower than extracted iron(II) and indicatedthat most iron(II) was adsorbed to the solid-phase orimmobilized as siderite and vivianite. Diffusive lossof iron from the soil was indicated by iron recovery(0.3 µmol gdw–1) in the flooding water after12 weeks. The organic content of the soil influencedthe concentrations of solid-phase iron(II) in deepersoil layers (> 6 mm); higher Fe(II) concentrationsin soil with limiting amounts of electron donors mayindicate lower consumption of CO2 by methanogenicbacteria and therefore a higher sideriteprecipitation. Soil planted with rice showed similariron(II) profiles of fresh paddy soil cores. However,maximal iron(III) concentrations ( 350µmol/cm3) were present in planted soil at adepth of 1 to 2.5 mm where oxygen is provided by a matof fine roots. Sulfate and nitrate concentrations inthe porewater were highest on the soil surface (10µM NO3 , 40 µM SO4 2–) anddecreased with depth. Similar profiles were detectedfor malate, acetate, lactate, and propionate, theconcentrations decreased gradually from the surface toa depth of 4 mm. Profiles of oxygen showed highestconcentrations at the surface due to photosyntheticproduction and a depletion of oxygen below 3 mm depth.Methane production rates measured from soil layersincubated separately in closed vessels were zero atthe soil surface and increased with depth. In soildepths below 4 mm where iron(III) concentrationsdecreased higher methane production rates werefound.  相似文献   
44.
Telomere repeat sequence (TRS) DNA is found at the termini of most eukaryotic chromosomes. The sequences are highly repetitive and G-rich (e.g., [C(1-3)A/TG(1-3)]n for the yeast Saccharomyces cerevisiae) and are packaged into nonnucleosomal protein-DNA structures in vivo. We have used total intensity light scattering and electron microscopy to monitor the effects of yeast TRS inserts on in vitro DNA condensation by cobalt (III) hexaammine. Insertion of 72 bp of TRS into a 3.3-kb plasmid depresses condensation as seen by light scattering and results in a 22% decrease in condensate thickness as measured by electron microscopy. Analysis of toroidal condensate dimensions suggests that the growth stages of condensation are inhibited by the presence of a TRS insert. The depression in total light scattering intensity is greater when the plasmid is linearized with the TRS at an end (39-49%) than when linearized with the TRS in the interior (18-22%). Circular dichroism of a 95-bp fragment containing the TRS insert gives a spectrum that is intermediate between the A-form and B-form, and the anomalous condensation behavior of the TRS suggests a noncanonical DNA structure. We speculate that under conditions in which the plasmid DNA condenses, the telomeric insert assumes a helical geometry that is similar to the A-form and is incompatible with packing into the otherwise B-form lattice of the condensate interior.  相似文献   
45.
Beta-D-galactofuranosidase is a good chemotherapeutic target for the design of inhibitors, since beta-D-galactofuranose is a constituent of important parasite glycoconjugates but is not present in the host mammals. With this aim, we have synthesized for the first time alkyl, benzyl and aryl 1-thio-beta-D-galactofuranosides by condensation of penta-O-benzoyl-alpha,beta-D-galactofuranose with the corresponding thiols, in the presence of SnCl4as catalyst. The complete chemical and spectroscopical characterization of these compounds showed that the reaction was stereoselective. Debenzoylation with sodium methoxide afforded the beta-S-galactofuranosides in high yield. The thioglycosides were tested as inhibitors of the beta-D- galactofuranosidase of Penicillium fellutanum, using for the first time 4-nitrophenyl-beta-D-galactofuranoside as chromogenic substrate. The 4- aminophenyl-1-thio-beta-D-galactofuranoside, obtained by catalytic hydrogenation of the nitrophenyl derivative, was the best inhibitor being then an adequate ligand for the preparation of an affinity phase aimed at the isolation of beta-d-galactofuranosidases from different sources. Also the inhibitory activity of d-galactono-1, 4-lactone was shown.   相似文献   
46.
Lyme disease is the most important vector-borne disease in the Northern hemisphere and represents a major public health challenge with insufficient means of reliable diagnosis. Skin is rarely investigated in proteomics but constitutes in the case of Lyme disease the key interface where the pathogens can enter, persist, and multiply. Therefore, we investigated proteomics on skin samples to detect Borrelia proteins directly in cutaneous biopsies in a robust and specific way. We first set up a discovery gel prefractionation-LC-MS/MS approach on a murine model infected by Borrelia burgdorferi sensu stricto that allowed the identification of 25 Borrelia proteins among more than 1300 mouse proteins. Then we developed a targeted gel prefractionation-LC-selected reaction monitoring (SRM) assay to detect 9/33 Borrelia proteins/peptides in mouse skin tissue samples using heavy labeled synthetic peptides. We successfully transferred this assay from the mouse model to human skin biopsies (naturally infected by Borrelia), and we were able to detect two Borrelia proteins: OspC and flagellin. Considering the extreme variability of OspC, we developed an extended SRM assay to target a large set of variants. This assay afforded the detection of nine peptides belonging to either OspC or flagellin in human skin biopsies. We further shortened the sample preparation and showed that Borrelia is detectable in mouse and human skin biopsies by directly using a liquid digestion followed by LC-SRM analysis without any prefractionation. This study thus shows that a targeted SRM approach is a promising tool for the early direct diagnosis of Lyme disease with high sensitivity (<10 fmol of OspC/mg of human skin biopsy).Lyme borreliosis is an arthropod-borne disease transmitted by hard ticks (Ixodes spp.). The causative agents are bacteria belonging to the Borrelia burgdorferi sensu lato group. In the United States, more than 30,000 cases have been reported to the Centers for Disease Control and Prevention in 2012. There, the unique pathogenic species of Borrelia is B. burgdorferi sensu stricto (s.s.). In Europe, between 65,000 and 85,000 cases are reported depending on the epidemiological study (1, 2), and the three most prevalent pathogenic species of Borrelia are Borrelia afzelii, Borrelia garinii, and B. burgdorferi s.s. The disease in both Europe and the United States is first characterized in most patients by an inflammatory skin lesion, erythema migrans (EM),1 which is the most frequent manifestation of the disease. Dissemination to other sites occurs secondarily and can involve among others articulation, nervous system, heart, and skin at other sites (3, 4). The diagnosis can be a real challenge because of the proteiform clinical manifestations. When an EM is present, which is the case for 80% of patients (3), early diagnosis is facilitated. However, EM presentation can be clinically atypical, making the recognition of this manifestation of Lyme borreliosis difficult (5). Later on, when Borrelia has disseminated to the target organs, biological diagnosis is based either on the direct detection of the pathogen in different patient body fluids and biopsies by means of culture and/or PCR or on the indirect demonstration of presence of Borrelia by detection of anti-pathogen-directed IgM and IgG antibodies (enzyme-linked immunosorbent assay (ELISA) and Western blot) (6).Concerning the direct detection of Borrelia, culture of the bacteria has allowed the spirochete isolation since the 80s in different specific Barbour-Stoenner-Kelly-based media by using skin biopsies or biological fluids such as blood or cerebrospinal fluid (7, 8). However, Borrelia culture is not routinely used as a diagnostic test because the bacterial growth takes several weeks and does not yield timely results. Indeed, it requires the use of the specific and expensive Barbour-Stoenner-Kelly medium and a dark field microscope to detect, frequently after at least 2 weeks of incubation, the presence of Borrelia in tissues or biological fluids. When performed from patients with EM, only 40–80% of the cultures are positive (6). In addition, the success of culture varies greatly according to the Borrelia species. PCR is quicker and generally more sensitive than culture with a range of 36–88%, although the success of bacterial detection varies with the gene selected for the assay (6). PCR is efficient for Borrelia detection in synovial liquid (60–85% of the cases) in the case of arthritis (9, 10) but less sensitive in cases of neuroborreliosis in cerebrospinal fluid (<20–40% of the cases) (9, 11). Moreover, PCR detects DNA and not proteins and therefore prevents the detection of active infection. As far as the skin biopsies are concerned, the sensitivity of detection is variable in cases of EM or acrodermatitis chronica atrophicans (12). Conversely, indirect detection using serological tests is not adapted to the early diagnosis as it relies on antibodies only detectable after at least 4–6 weeks after the infectious tick bite. These tests also suffer from lack of specificity (13). New diagnostic approaches are therefore required. Selected reaction monitoring (SRM) has been recognized as an efficient mass spectrometry-based technique for the biomarker verification and validation in several biological fluids (blood, plasma, and urine) (14 18). The demonstrated specificity, selectivity, and high sensitivity (low attomole range) of the technique (19) makes it promising for the development of an SRM-based method for early diagnosis of Lyme disease. To our knowledge, this strategy has only rarely been used on skin tissue (20). It would allow the direct and rapid detection of Borrelia proteins in the skin, demonstrating the presence of an active infection very early after the tick transmission.In the present study, we set up a workflow to develop a robust and sensitive SRM assay to detect Borrelia in human skin samples (Fig. 1). First, we looked for Borrelia proteins in infected mouse skin samples by using a classical shotgun/discovery strategy. This experiment afforded a list of bacterial proteins that are expressed in vivo in the skin of an infected mammalian host. Then, we selected protein targets and optimized a Ge-LC-SRM assay to specifically detect and quantify these proteins in mouse skin samples. We demonstrated the transferability of the SRM assay for the detection of the targeted proteins in human skin samples naturally infected with Borrelia. Finally, we improved the experimental protocol to avoid gel prefractionation.Open in a separate windowFig. 1.Summary of the experimental workflow. Experimentally infected mouse skin biopsies were analyzed by a shotgun Ge-LC-MS/MS strategy to identify Borrelia target proteins. Then we developed targeted LC-SRM assays with or without gel prefractionation. Finally, these targeted methods were transferred on tick-infected human skin samples.  相似文献   
47.
The physicochemical properties of cellular environments with a high macromolecular content have been systematically characterized to explain differences observed in the diffusion coefficients, kinetics parameters, and thermodynamic properties of proteins inside and outside of cells. However, much less attention has been given to the effects of macromolecular crowding on cell physiology. Here, we review recent findings that shed some light on the role of crowding in various cellular processes, such as reduction of biochemical activities, structural reorganization of the cytoplasm, cytoplasm fluidity, and cellular dormancy. We conclude by presenting some unresolved problems that require the attention of biophysicists, biochemists, and cell physiologists. Although it is still underappreciated, macromolecular crowding plays a critical role in life as we know it.  相似文献   
48.

Background  

The Beijing lineage of Mycobacterium tuberculosis is causing concern due to its global distribution and its involvement in severe outbreaks. Studies focused on this lineage are mainly restricted to geographical settings where its prevalence is high, whereas those in other areas are scarce. In this study, we analyze Beijing isolates in the Mediterranean area, where this lineage is not prevalent and is mainly associated with immigrant cases.  相似文献   
49.
As with many viruses, rabies virus (RABV) infection induces type I interferon (IFN) production within the infected host cells. However, RABV has evolved mechanisms by which to inhibit IFN production in order to sustain infection. Here we show that RABV infection of dendritic cells (DC) induces potent type I IFN production and DC activation. Although DCs are infected by RABV, the viral replication is highly suppressed in DCs, rendering the infection non-productive. We exploited this finding in bone marrow derived DCs (BMDC) in order to differentiate which pattern recognition receptor(s) (PRR) is responsible for inducing type I IFN following infection with RABV. Our results indicate that BMDC activation and type I IFN production following a RABV infection is independent of TLR signaling. However, IPS-1 is essential for both BMDC activation and IFN production. Interestingly, we see that the BMDC activation is primarily due to signaling through the IFNAR and only marginally induced by the initial infection. To further identify the receptor recognizing RABV infection, we next analyzed BMDC from Mda-5−/− and RIG-I−/− mice. In the absence of either receptor, there is a significant decrease in BMDC activation at 12h post infection. However, only RIG-I−/− cells exhibit a delay in type I IFN production. In order to determine the role that IPS-1 plays in vivo, we infected mice with pathogenic RABV. We see that IPS-1−/− mice are more susceptible to infection than IPS-1+/+ mice and have a significantly increased incident of limb paralysis.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号