首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7934篇
  免费   821篇
  2021年   108篇
  2020年   55篇
  2019年   76篇
  2018年   108篇
  2017年   92篇
  2016年   148篇
  2015年   232篇
  2014年   277篇
  2013年   352篇
  2012年   523篇
  2011年   424篇
  2010年   302篇
  2009年   264篇
  2008年   365篇
  2007年   370篇
  2006年   341篇
  2005年   322篇
  2004年   334篇
  2003年   305篇
  2002年   288篇
  2001年   211篇
  2000年   195篇
  1999年   189篇
  1998年   105篇
  1997年   98篇
  1996年   84篇
  1995年   96篇
  1994年   89篇
  1993年   67篇
  1992年   161篇
  1991年   123篇
  1990年   121篇
  1989年   117篇
  1988年   105篇
  1987年   96篇
  1986年   110篇
  1985年   78篇
  1984年   83篇
  1983年   76篇
  1982年   89篇
  1981年   68篇
  1980年   54篇
  1979年   81篇
  1978年   87篇
  1977年   68篇
  1976年   58篇
  1975年   77篇
  1974年   79篇
  1973年   53篇
  1972年   50篇
排序方式: 共有8755条查询结果,搜索用时 15 毫秒
381.
The nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro‐regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered. Yet, it is clear that the SG is under stringent pituitary control, and forms a fascinating, clinically relevant peripheral target organ in which to study the neuroendocrine and neural regulation of epithelia. Sebum, the major secretory product of the SG, is composed of a complex mixture of lipids resulting from the holocrine secretion of specialised epithelial cells (sebocytes). It is indicative of a role of the neuroendocrine system in SG function that excess circulating levels of growth hormone, thyroxine or prolactin result in increased sebum production (seborrhoea). Conversely, growth hormone deficiency, hypothyroidism, and adrenal insufficiency result in reduced sebum production and dry skin. Furthermore, the androgen sensitivity of SGs appears to be under neuroendocrine control, as hypophysectomy (removal of the pituitary) renders SGs largely insensitive to stimulation by testosterone, which is crucial for maintaining SG homeostasis. However, several neurohormones, such as adrenocorticotropic hormone and α‐melanocyte‐stimulating hormone, can stimulate sebum production independently of either the testes or the adrenal glands, further underscoring the importance of neuroendocrine control in SG biology. Moreover, sebocytes synthesise several neurohormones and express their receptors, suggestive of the presence of neuro‐autocrine mechanisms of sebocyte modulation. Aside from the neuroendocrine system, it is conceivable that secretion of neuropeptides and neurotransmitters from cutaneous nerve endings may also act on sebocytes or their progenitors, given that the skin is richly innervated. However, to date, the neural controls of SG development and function remain poorly investigated and incompletely understood. Botulinum toxin‐mediated or facial paresis‐associated reduction of human sebum secretion suggests that cutaneous nerve‐derived substances modulate lipid and inflammatory cytokine synthesis by sebocytes, possibly implicating the nervous system in acne pathogenesis. Additionally, evidence suggests that cutaneous denervation in mice alters the expression of key regulators of SG homeostasis. In this review, we examine the current evidence regarding neuroendocrine and neurobiological regulation of human SG function in physiology and pathology. We further call attention to this line of research as an instructive model for probing and therapeutically manipulating the mechanistic links between the nervous system and mammalian skin.  相似文献   
382.
Ecological camera traps are increasingly used by wildlife biologists to unobtrusively monitor an ecosystems animal population. However, manual inspection of the images produced is expensive, laborious, and time‐consuming. The success of deep learning systems using camera trap images has been previously explored in preliminary stages. These studies, however, are lacking in their practicality. They are primarily focused on extremely large datasets, often millions of images, and there is little to no focus on performance when tasked with species identification in new locations not seen during training. Our goal was to test the capabilities of deep learning systems trained on camera trap images using modestly sized training data, compare performance when considering unseen background locations, and quantify the gradient of lower bound performance to provide a guideline of data requirements in correspondence to performance expectations. We use a dataset provided by Parks Canada containing 47,279 images collected from 36 unique geographic locations across multiple environments. Images represent 55 animal species and human activity with high‐class imbalance. We trained, tested, and compared the capabilities of six deep learning computer vision networks using transfer learning and image augmentation: DenseNet201, Inception‐ResNet‐V3, InceptionV3, NASNetMobile, MobileNetV2, and Xception. We compare overall performance on “trained” locations where DenseNet201 performed best with 95.6% top‐1 accuracy showing promise for deep learning methods for smaller scale research efforts. Using trained locations, classifications with <500 images had low and highly variable recall of 0.750 ± 0.329, while classifications with over 1,000 images had a high and stable recall of 0.971 ± 0.0137. Models tasked with classifying species from untrained locations were less accurate, with DenseNet201 performing best with 68.7% top‐1 accuracy. Finally, we provide an open repository where ecologists can insert their image data to train and test custom species detection models for their desired ecological domain.  相似文献   
383.
Photosynthesis Research - Photosynthesis and carbohydrate metabolism of higher plants need to be tightly regulated to prevent tissue damage during environmental changes. The intracellular position...  相似文献   
384.
385.
386.
387.
388.
Because of their role of information transmitter between the spinal cord and the muscle fibers, motor neurons are subject to physical stimulation and mechanical property modifications. We report on motoneuron elasticity investigated by time-resolved pump and probe spectroscopy. A dual picosecond geometry simultaneously probing the acoustic impedance mismatch at the cell-titanium transducer interface and acoustic wave propagation inside the motoneuron is presented. Such noncontact and nondestructive microscopy, correlated to standard atomic force microscopy or a fluorescent labels approach, has been carried out on a single cell to address some physical properties such as bulk modulus of elasticity, dynamical longitudinal viscosity, and adhesion.  相似文献   
389.
Cornulites sp. and Fistulipora przhidolensis formed a symbiotic association in the Pridoli (latest Silurian) of Saaremaa Island, Estonia. This Cornulites sp.–F. przhidolensis association is the youngest example of cornulitid–bryozoan symbiosis. Symbiosis is indicated by intergrowth of both organisms. The cornulitids are completely embedded within the cystoporate bryozoan colony, leaving only their apertures free on the growth surface of bryozoan. In terms of food competition, this association could have been slightly harmful to F. przhidolensis as Cornulites sp. may have been a kleptoparasite. There may have been a small escalation in the evolution of the endobiotic life mode of cornulitids as the number of such associations increased from the Ordovician to Silurian. It is likely that Palaeozoic bryozoan symbiosis reached its maximum in the Late Ordovician. Most of the symbiotic bryozoans in the Palaeozoic are trepostomes, and the diversity of symbiotic associations was also greatest among trepostomes.  相似文献   
390.

Wetlands are among the most diverse environments on the planet and are strongly threatened by human activities. Their restoration and/or mitigation of human impacts, therefore, relies on information that can aid to the management of impacted wetlands so that they return to a (semi-) natural state. We investigate in this study the relationship between dormant stages of zooplankton and clay removal in areas subjected to mining. We evaluate whether a gradual increase in topsoil addition from donor natural wetlands to the sediment of mined wetlands influenced the zooplankton community. Eight wetlands were sampled in the Sinos River floodplain, four natural and four mined. In the laboratory, four field sediment samples were incubated for zooplankton hatching in five treatments comprising sediments from: mined wetlands, natural wetlands, and three treatments containing mined sediments added with low (5%), medium (20%) and high (40%) quantities of sediment from natural wetlands. Hatching consisted of 61 individuals distributed across eight zooplankton taxa. Copepod nauplii were the most abundant (31.1%) followed by Epiphanes sp. (29.5%) and Ovalona glabra (16.4%). While natural wetlands provided 42.6% of the hatched zooplankton, mined wetlands had just 6.5%. Zooplankton richness and abundance were higher in natural wetland sediments compared with mined and added sediment wetlands. To some degree, the sediment soil donation from natural to mined wetlands was considered viable. As long as prior studies are performed to test the size and quality of the dormant banks present in the sediment of candidate donor wetlands, sediment from donor wetlands may aid in the establishment of a more diverse community in disturbed systems.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号