首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2101篇
  免费   261篇
  2362篇
  2023年   14篇
  2021年   29篇
  2020年   23篇
  2019年   31篇
  2018年   28篇
  2017年   36篇
  2016年   54篇
  2015年   64篇
  2014年   71篇
  2013年   102篇
  2012年   106篇
  2011年   116篇
  2010年   77篇
  2009年   72篇
  2008年   69篇
  2007年   74篇
  2006年   82篇
  2005年   90篇
  2004年   67篇
  2003年   84篇
  2002年   90篇
  2001年   54篇
  2000年   67篇
  1999年   51篇
  1998年   28篇
  1997年   30篇
  1996年   26篇
  1995年   33篇
  1994年   26篇
  1993年   22篇
  1992年   33篇
  1991年   36篇
  1990年   40篇
  1989年   42篇
  1988年   32篇
  1987年   36篇
  1986年   26篇
  1985年   34篇
  1984年   33篇
  1983年   26篇
  1982年   23篇
  1981年   17篇
  1979年   23篇
  1978年   21篇
  1975年   22篇
  1974年   18篇
  1973年   21篇
  1972年   13篇
  1971年   37篇
  1970年   16篇
排序方式: 共有2362条查询结果,搜索用时 10 毫秒
41.
42.
In Leuconostoc mesenteroides subsp. mesenteroides 19D, citrate is transported by a secondary citrate carrier (CitP). Previous studies of the kinetics and mechanism of CitP performed in membrane vesicles of L. mesenteroides showed that CitP catalyzes divalent citrate HCit2-/H+ symport, indicative of metabolic energy generation by citrate metabolism via a secondary mechanism (C. Marty-Teysset, J. S. Lolkema, P. Schmitt, C. Divies, and W. N. Konings, J. Biol. Chem. 270:25370-25376, 1995). This study also revealed an efficient exchange of citrate and D-lactate, a product of citrate/carbohydrate cometabolism, suggesting that under physiological conditions, CitP may function as a precursor/product exchanger rather than a symporter. In this paper, the energetic consequences of citrate metabolism were investigated in resting cells of L. mesenteroides. The generation of metabolic energy in the form of a pH gradient (delta pH) and a membrane potential (delta psi) by citrate metabolism was found to be largely dependent on cometabolism with glucose. Furthermore, in the presence of glucose, the rates of citrate utilization and of pyruvate and lactate production were strongly increased, indicating an enhancement of citrate metabolism by glucose metabolism. The rate of citrate metabolism under these conditions was slowed down by the presence of a membrane potential across the cytoplasmic membrane. The production of D-lactate inside the cell during cometabolism was shown to be responsible for the enhancement of the electrogenic uptake of citrate. Cells loaded with D-lactate generated a delta psi upon dilution in buffer containing citrate, and cells incubated with citrate built up a pH gradient upon addition of D-lactate. The results are consistent with an electrogenic citrate/D-lactate exchange generating in vivo metabolic energy in the form of a proton electrochemical gradient across the membrane. The generation of metabolic energy from citrate metabolism in L. mesenteroides may contribute significantly to the growth advantage observed during cometabolism of citrate and glucose.  相似文献   
43.
44.
45.
46.
47.
Human cell lines derived from three epithelial carcinomas (CaSki, HeLa, SiHa), one B lymphoma (BL60), one promyelocytic (HL60), one monocytic (U937) leukemia, one chronic myelogenous leukemia (sensitive K562S; multichemoresistant K562R) and normal human skin fibroblasts were compared for their capacity of staining with rhodamine 123 (Rh 123) and their kinetics of dye exclusion. Cells were exposed for 30 min to 10 g/ml of Rh 123 in culture medium; fluorescence intensity was measured by flow cytometry immediately or 1, 2, 3 and 4 h after staining. The highest fluorescence intensity was observed in carcinoma cell lines; there was no incorporation in multichemoresistant K562R cells. Exclusion of Rh 123 was evaluated from 0 to 4 h, both by flow cytometry and by fluorimetry. Fluorescence intensity measured by flow cytometry decreased slightly in carcinoma and leukemia cells and rapidly in fibroblasts. In all cell lines Rh 123 exclusion was inhibited by 40 mol/L verapamil and 5 mmol/L probenecid. Thus, incorporation and exclusion of Rh 123 allows distinction between normal and tumoral cells; moreover, inhibition of exclusion by verapamil and probenecid favors the involvement of active cell membrane mechanisms in the exclusion process.Abbreviations PBS phosphate-buffered saline - Rh 123 rhodamine 123  相似文献   
48.
The objective of the present study was to determine if destruction of ovarian antral follicles by laser-cauterization affects CL lifespan during the estrous cycle of the gilt. Cyclic gilts were randomly assigned to either SHAM, laser (L) or laser-estradiol (L-E2) treatment groups, with the L-E2 group receiving a 5-mg intramuscular (i.m.) injection of estradiol-17beta cypionate at the time of the first surgery. Ovarian antral follicles were laser-cauterized on either Days 12 and 14 (L12) or Days 14 and 17 (L14) of the estrous cycle. In the L12-E2 group, 3 of 4 gilts had extended mean interestrus intervals of more than 22 days compared with 0 of 4, 0 of 6, 0 of 7 and 1 of 5 gilts in the SHAM, L12, L14 and L14-E2 groups, respectively. The L12-E2 gilts had a longer (P<0.05) mean interestrus interval (23.5+/-1.3 days) than the L12 (20.0+/-1.1 days), L14 (20.7+/-1.0 days) and SHAM (20.5+/-1.3 days). The mean interestrus interval of L14-E2 gilts (21.8+/-1.2 days) did not differ from those of the L12-E2 group or the L12, L14 and SHAM group gilts. Six additional gilts were injected with 5 mg estradiol cypionate-17beta to serve as nonsurgical controls for E2 treatment. Gilts (3 of 3) given an E2 injection on Day 12 had extended mean interestrus interval (26.0+/-2.6 days), while 2 of 3 gilts injected with E2 on day 14 had extended mean interestrus intervals (27.7+/-2.1 days). These results indicate that in cyclic gilts destruction of ovarian follicles by laser-cauterization did not affect CL lifespan, and that luteolysis is not dependent on the presence of antral follicles.  相似文献   
49.
To examine the role of the glycans of human immunodeficiency virus type 1 transmembrane glycoprotein gp41, conserved glycosylation sites within the env sequence (Asn-621, Asn-630, and Asn-642) were mutated to Gln. The mutated and control wild-type env genes were introduced into recombinant vaccinia virus and used to infect BHK-21 or CD4+ CEM cells. Mutated gp41 appeared as a 35-kDa band in a Western blot (immunoblot), and it comigrated with the deglycosylated form of wild-type gp41. Proteolytic cleavage of the recombinant wild-type and mutant forms of the gp160 envelope glycoprotein precursor was analyzed by pulse-chase experiments and enzyme-linked immunosorbent assay: gp160 synthesis was similar whether cells were infected with control or mutated env-expressing recombinant vaccinia virus, but about 10-fold less cleaved gp120 and gp41 was produced by the mutated construct than the control construct. The rates of gp120-gp41 cleavage at each of the two potential sites appeared to be comparable in the two constructs. By using a panel of antibodies specific for gp41 and gp120 epitopes, it was shown that the overall immunoreactivities of control and mutated gp41 proteins were similar but that reactivity to epitopes at the C and N termini of gp120, as present on gp160 produced by the mutated construct, was enhanced. This was no longer observed for cleaved gp120 in supernatants. Both gp120 proteins, from control and mutated env, were expressed on the cell surface under a cleaved form and could bind to membrane CD4, as determined by quantitative immunofluorescence assay. In contrast, and despite sufficient expression of env products at the cell membrane, gp41 produced by the mutated construct was unable to induce membrane fusion. Therefore, while contradictory results reported in the literature suggest that gp41 individual glycosylation sites are dispensable for the bioactivity and conformation of env products, it appears that such is not the case when the whole gp41 glycan cluster is removed.  相似文献   
50.
RNase MRP is a site-specific ribonucleoprotein endoribonuclease that cleaves RNA from the mitochondrial origin of replication in a manner consistent with a role in priming leading-strand DNA synthesis. Despite the fact that the only known RNA substrate for this enzyme is complementary to mitochondrial DNA, the majority of the RNase MRP activity in a cell is found in the nucleus. The recent characterization of this activity in Saccharomyces cerevisiae and subsequent cloning of the gene coding for the RNA subunit of the yeast enzyme have enabled a genetic approach to the identification of a nuclear role for this ribonuclease. Since the gene for the RNA component of RNase MRP, NME1, is essential in yeast cells and RNase MRP in mammalian cells appears to be localized to nucleoli within the nucleus, we utilized both regulated expression and temperature-conditional mutations of NME1 to assay for a possible effect on rRNA processing. Depletion of the RNA component of the enzyme was accomplished by using the glucose-repressed GAL1 promoter. Shortly after the shift to glucose, the RNA component of the enzyme was found to be depleted severely, and rRNA processing was found to be normal at all sites except the B1 processing site. The B1 site, at the 5' end of the mature 5.8S rRNA, is actually composed of two cleavage sites 7 nucleotides apart. This cleavage normally generates two species of 5.8S rRNA at a ratio of 10:1 (small to large) in most eukaryotes. After RNase MRP depletion, yeast cells were found to have almost exclusively the larger species of 5.8S rRNA. In addition, an aberrant 309-nucleotide precursor that stretched from the A2 to E processing sites of rRNA accumulated in these cells. Temperature-conditional mutations in the RNase MRP RNA gene gave an identical phenotype.Translation in yeast cells depleted of the smaller 5.8S rRNA was found to remain robust, suggesting a possible function for two 5.8S rRNAs in the regulated translation of select messages. These results are consistent with RNase MRP playing a role in a late step of rRNA processing. The data also indicate a requirement for having the smaller form of 5.8S rRNA, and they argue for processing at the B1 position being composed of two separate cleavage events catalyzed by two different activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号