首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6637篇
  免费   605篇
  国内免费   4篇
  7246篇
  2023年   33篇
  2022年   86篇
  2021年   139篇
  2020年   89篇
  2019年   112篇
  2018年   116篇
  2017年   111篇
  2016年   199篇
  2015年   301篇
  2014年   298篇
  2013年   409篇
  2012年   435篇
  2011年   418篇
  2010年   277篇
  2009年   207篇
  2008年   353篇
  2007年   355篇
  2006年   346篇
  2005年   280篇
  2004年   260篇
  2003年   231篇
  2002年   236篇
  2001年   138篇
  2000年   149篇
  1999年   131篇
  1998年   90篇
  1997年   55篇
  1996年   63篇
  1995年   51篇
  1994年   45篇
  1993年   62篇
  1992年   84篇
  1991年   93篇
  1990年   86篇
  1989年   66篇
  1988年   69篇
  1987年   60篇
  1986年   56篇
  1985年   43篇
  1984年   52篇
  1983年   41篇
  1982年   42篇
  1981年   37篇
  1979年   38篇
  1978年   39篇
  1976年   33篇
  1975年   49篇
  1974年   30篇
  1973年   27篇
  1972年   37篇
排序方式: 共有7246条查询结果,搜索用时 15 毫秒
31.
Rationale: The αvβ6- and αvβ8-integrins, two cell-adhesion receptors upregulated in many tumors and involved in the activation of the latency associated peptide (LAP)/TGFβ complex, represent potential targets for tumor imaging and therapy. We investigated the tumor-homing properties of a chromogranin A-derived peptide containing an RGDL motif followed by a chemically stapled alpha-helix (called “5a”), which selectively recognizes the LAP/TGFβ complex-binding site of αvβ6 and αvβ8.Methods: Peptide 5a was labeled with IRDye 800CW (a near-infrared fluorescent dye) or with 18F-NOTA (a label for positron emission tomography (PET)); the integrin-binding properties of free peptide and conjugates were then investigated using purified αvβ6/αvβ8 integrins and various αvβ6/αvβ8 single - or double-positive cancer cells; tumor-homing, biodistribution and imaging properties of the conjugates were investigated in subcutaneous and orthotopic αvβ6-positive carcinomas of the pancreas, and in mice bearing subcutaneous αvβ8-positive prostate tumors.Results: In vitro studies showed that 5a can bind both integrins with high affinity and inhibits cell-mediated TGFβ activation. The 5a-IRDye and 5a-NOTA conjugates could bind purified αvβ6/αvβ8 integrins with no loss of affinity compared to free peptide, and selectively recognized various αvβ6/αvβ8 single- or double-positive cancer cells, including cells from pancreatic carcinoma, melanoma, oral mucosa, bladder and prostate cancer. In vivo static and dynamic optical near-infrared and PET/CT imaging and biodistribution studies, performed in mice with subcutaneous and orthotopic αvβ6-positive carcinomas of the pancreas, showed high target-specific uptake of fluorescence- and radio-labeled peptide by tumors and low non-specific uptake in other organs and tissues, except for excretory organs. Significant target-specific uptake of fluorescence-labeled peptide was also observed in mice bearing αvβ8-positive prostate tumors.Conclusions: The results indicate that 5a can home to αvβ6- and/or αvβ8-positive tumors, suggesting that this peptide can be exploited as a ligand for delivering imaging or anticancer agents to αvβ6/αvβ8 single- or double-positive tumors, or as a tumor-homing inhibitor of these TGFβ activators.  相似文献   
32.
In acetohydroxy acid synthase from Streptomyces cinnamonensis mutants affected in valine regulation, the impact of mutations on interactions between the catalytic and the regulatory subunits was examined using yeast two-hybrid system. Mutations in the catalytic and the regulatory subunits were projected into homology models of the respective proteins. Two changes in the catalytic subunit, E139A (α domain) and ΔQ217 (β domain), both located on the surface of the catalytic subunit dimer, lowered the interaction with the regulatory subunit. Three consecutive changes in the N-terminal part of the regulatory subunit were examined. Changes G16D and V17D in a loop and adjacent α-helix of ACT domain affected the interaction considerably, indicating that this region might be in contact with the catalytic subunit during allosteric regulation. In contrast, the adjacent mutation L18F did not influence the interaction at all. Thus, L18 might participate in valine binding or conformational change transfer within the regulatory subunits. Shortening of the regulatory subunit to 107 residues reduced the interaction essentially, suggesting that the C-terminal part of the regulatory subunit is also important for the catalytic subunit binding.  相似文献   
33.
34.
35.
Information on protein–protein interactions (PPIs) is of critical importance for studying complex biological systems and developing therapeutic strategies. Here, we present a double‐readout bioluminescence‐based two‐hybrid technology, termed LuTHy, which provides two quantitative scores in one experimental procedure when testing binary interactions. PPIs are first monitored in cells by quantification of bioluminescence resonance energy transfer (BRET) and, following cell lysis, are again quantitatively assessed by luminescence‐based co‐precipitation (LuC). The double‐readout procedure detects interactions with higher sensitivity than traditional single‐readout methods and is broadly applicable, for example, for detecting the effects of small molecules or disease‐causing mutations on PPIs. Applying LuTHy in a focused screen, we identified 42 interactions for the presynaptic chaperone CSPα, causative to adult‐onset neuronal ceroid lipofuscinosis (ANCL), a progressive neurodegenerative disease. Nearly 50% of PPIs were found to be affected when studying the effect of the disease‐causing missense mutations L115R and ?L116 in CSPα with LuTHy. Our study presents a robust, sensitive research tool with high utility for investigating the molecular mechanisms by which disease‐associated mutations impair protein activity in biological systems.  相似文献   
36.
Subsurface ecosystems like groundwater harbour diverse microbial communities, including small-sized, putatively symbiotic organisms of the Candidate Phyla Radiation, yet little is known about their ecological preferences and potential microbial partners. Here, we investigated a member of the superphylum Microgenomates (Cand. Roizmanbacterium ADI133) from oligotrophic groundwater using mini-metagenomics and monitored its spatio-temporal distribution using 16S rRNA gene analyses. A Roizmanbacteria-specific quantitative PCR assay allowed us to track its abundance over the course of 1 year within eight groundwater wells along a 5.4 km hillslope transect, where Roizmanbacteria reached maximum relative abundances of 2.3%. In-depth genomic analyses suggested that Cand. Roizmanbacterium ADI133 is a lactic acid fermenter, potentially able to utilize a range of complex carbon substrates, including cellulose. We hypothesize that it attaches to host cells using a trimeric autotransporter adhesin and inhibits their cell wall biosynthesis using a toxin–antitoxin system. Network analyses based on correlating Cand. Roizmanbacterium ADI133 abundances with amplicon sequencing-derived microbial community profiles suggested one potential host organism, classified as a member of the class Thermodesulfovibrionia (Nitrospirae). By providing lactate as an electron donor Cand. Roizmanbacterium ADI133 potentially mediates the transfer of carbon to other microorganisms and thereby is an important connector in the microbial community.  相似文献   
37.
38.
Differentiation and growth of chondrocytes in fetal growth plates of vertebrate long bones and ribs appear to occur in a gradual, continuous manner between the resting zone through the proliferation zone, maturation zone, and upper and lower hypertrophic zones, with a continuous increase in cell size up to 10-fold of the volume of a resting chondrocyte. Here we provide evidence, however, that after centrifugation through a continuous Percoll gradient growth plate chondrocytes separate into four distinct cell populations (B1 to B4) which differ markedly in density, size, and gene expression. These populations collect in the absence of any phase borders in the gradient which might serve as concentration barriers. Fractions B1 and B2 contained the largest cells with the lowest buoyant density and showed the highest expression levels for type X collagen (Col X), but only the B1 population expressed high levels of matrix metalloproteinase-13 (collagenase 3). Cells in fraction B3 were significantly smaller and expressed little Col X, while cells in fraction B4 were of similar size to cells in the resting zone without significant Col X expression. The highest levels of parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR-1), and Indian hedgehog (Ihh) expression were also found in the hypertrophic fractions B1 and B2 and not in the prehypertrophic fraction B3, as expected from in situ hybridization data on PTHR-1 expression in fetal rodent or chicken growth plates. Incubation of fractions B1 to B3 with the amino-terminal fragments PTH (1-34) or PTHrP (1-40) suppressed the expression of Col X and PTHR-1 by more than 50% and the expression of Ihh nearly completely. In contrast, the mid-regional PTH fragment PTH (28-48) and PTH (52-84) consistently stimulated the expression of PTHR-1 by 10-20% in fractions B1 to B3. These findings confirm the existence of distinct differentiation stages within chondrocytes of the growth plate and support the hypothesis proposed by Vortkamp et al. (Science 273(1996)613) of a regulatory feedback loop of Ihh and PTH/PTHrP fragments controlling the differentiation of proliferating to prehypertrophic chondrocytes, but extend the ability to respond to PTH/PTHrP hypertrophic chondrocytes.  相似文献   
39.
40.
Isolated P450 monooxygenases have for long been neglected catalysts in enzyme technology. This is surprising as they display a remarkable substrate specificity catalyzing reactions, which represent a challenge for classic organic chemistry. On the other hand, many P450 monooxygenases are membrane bound, depend on rather complicated electron transfer systems and require expensive cofactors such as NAD(P)H. Their activities are low, and stability leaves much to be desired. The use of bacterial P450 monooxygenases from CYP102 family allows overcoming some of these handicaps. They are soluble and their turnovers are high, presumably because their N-terminal heme monooxygenase and their C-terminal diflavin reductase domain are covalently linked. In recent years, protein engineering approaches have been successfully used to turn CYP102 monooxgenases into powerful biocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号