首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
  22篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1983年   1篇
  1979年   1篇
  1930年   1篇
  1925年   1篇
  1924年   1篇
  1920年   2篇
  1919年   2篇
排序方式: 共有22条查询结果,搜索用时 0 毫秒
21.
This study reports on alterations in the magnitude and frequency of extremes in reproductive phenology using long‐term records (1951–2008) for plant species widely distributed across Germany. For each of fourteen indicator phases studied, time series of annual onset dates at up to 119 stations, providing 50–58 years of observation, were standardized by their station mean and standard deviation. Four alternative statistical models were applied and compared to derive probabilities of extreme early or late onset times for the phases: (1) Gaussian models were used to describe decadal probabilities of standardized anomalies, defined by data either falling below the 5th or exceeding the 95th percentile. (2) Semi‐parametric quantile regression was employed for flexible and robust modelling of trends in different quantiles of onset dates. (3) Generalized extreme value distributions (GEV) were fitted to annual detrended minima and maxima of standardized anomalies, and (4) Generalized Pareto distributions (GPD) were fitted to extremes defined as peaks over threshold. Probabilities of extreme early phenological events inferred from Gaussian models, increased on average from 3 to 12%, whereas probabilities of extreme late phenological events decreased from 6 to 2% over the study period. Based on quantile regressions, summer and autumn phases revealed a more pronounced advancing pattern than spring phases. Estimated return levels by GEV were similar for the GPD methods, indicating that extreme early phenological events of magnitudes 2.5, 2.8, and 3.6 on the detrended standardized anomaly scale would occur every 20 years for spring, summer and autumn phases, respectively. This corresponds to absolute onset advances of up to 2 months depending on the season and species. This study demonstrates how extreme phenological events can be accurately modelled even in cases of inherently small numbers of observations, and underlines the need for additional evaluation related to their impacts on ecosystem functioning.  相似文献   
22.
R1 is a non-long terminal repeat (non-LTR) retrotransposable element that inserts into a specific sequence of insect 28S ribosomal RNA genes. We have previously shown that this element has been maintained through vertical transmission in the melanogaster species subgroup of Drosophila. To address whether R1 elements have been vertically transmitted for longer periods of evolutionary time, the analysis has been extended to 11 other species from four species groups of the genus Drosophila (melanogaster, obscura, testecea, and repleta). All sequenced elements appeared functional on the basis of the preservation of their open-reading frames and consistently higher rate of substitution at synonymous sites relative to replacement sites. The phylogenetic relationships of the R1 elements from all species analyzed were congruent with the species phylogenies, suggesting that the R1 elements have been vertically transmitted since the inception of the Drosophila genus, an estimated 50-70 Mya. The stable maintenance of R1 through the germ line appears to be the major mechanism for the widespread distribution of these elements in Drosophila. In two species, D. neotestecea of the testecea group and D. takahashii of the melanogaster group, a second family of R1 elements was also present that differed in sequence by 46% and 31%, respectively, from the family that was congruent with the species phylogeny. These second families may represent occasional horizontal transfers or, alternatively, they could reflect the ability of R1 elements to diverge into new families within a species and evolve independently.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号