全文获取类型
收费全文 | 704篇 |
免费 | 79篇 |
专业分类
783篇 |
出版年
2016年 | 6篇 |
2015年 | 15篇 |
2014年 | 12篇 |
2013年 | 16篇 |
2012年 | 20篇 |
2011年 | 12篇 |
2010年 | 12篇 |
2009年 | 10篇 |
2008年 | 17篇 |
2007年 | 28篇 |
2006年 | 21篇 |
2005年 | 13篇 |
2004年 | 14篇 |
2003年 | 14篇 |
2002年 | 20篇 |
2001年 | 20篇 |
2000年 | 14篇 |
1999年 | 20篇 |
1998年 | 10篇 |
1997年 | 6篇 |
1996年 | 10篇 |
1995年 | 11篇 |
1993年 | 14篇 |
1992年 | 17篇 |
1991年 | 17篇 |
1990年 | 19篇 |
1989年 | 19篇 |
1988年 | 21篇 |
1987年 | 17篇 |
1986年 | 24篇 |
1985年 | 14篇 |
1984年 | 17篇 |
1983年 | 15篇 |
1982年 | 11篇 |
1981年 | 11篇 |
1980年 | 14篇 |
1979年 | 14篇 |
1978年 | 14篇 |
1977年 | 18篇 |
1976年 | 17篇 |
1975年 | 16篇 |
1974年 | 23篇 |
1973年 | 6篇 |
1972年 | 17篇 |
1971年 | 6篇 |
1970年 | 6篇 |
1969年 | 8篇 |
1968年 | 6篇 |
1967年 | 7篇 |
1966年 | 6篇 |
排序方式: 共有783条查询结果,搜索用时 0 毫秒
61.
The E5 protein of bovine papillomavirus is a 44-amino acid, Golgi-resident, type II transmembrane protein that efficiently transforms immortalized mouse fibroblasts. The transmembrane (TM) domain of E5 is not only critical for biological activity, it also regulates interactions with cellular targets including the platelet derived growth factor receptor (PDGF-R) and the 16-kDa subunit of the vacuolar proton ATPase (V-ATPase). In order to define the specific TM amino acids essential for E5 biological and biochemical activity, we performed scanning alanine mutagenesis on 25 of the 30 potential TM residues and genetically mapped discrete alpha-helical domains which separately regulated the ability of E5 to bind PDGF-R, activate PDGF-R, and to form oligomers. Alanine substitutions at positions 17, 21, and 24 (which lie on the same helical face) greatly inhibited E5 association with the PDGF-R, suggesting that this region comprises the receptor binding site. PDGF-R activation also mapped to a specific but broader domain in E5; mutant proteins with alanines on one helical face (positions 8, 9, 11, 16, 19, 22, and 23) continued to induce PDGF-R tyrosine phosphorylation, whereas mutant proteins with alanines on the opposite helical face (positions 7, 10, 13, 17, 18, 21, 24, and 25) did not, indicating that the latter helical face was critical for mediating receptor transphosphorylation. Interestingly, these "activation-defective" mutants segregated into two classes: 1) those that were unable to form dimers but that could still form higher order oligomers and transform cells, and 2) those that were defective for PDGF-R binding and were transformation-incompetent. These findings suggest that the ability of E5 to dimerize and to bind PDGF-R is important for receptor activation. However, since several transformation-competent E5 mutants were defective for binding and/or activating PDGF-R, it is apparent that E5 must have additional activities to mediate cell transformation. Finally, alanine substitutions also defined two separate helical faces critical for E5/E5 interactions (homodimer formation). Thus, our data identify distinct E5 helical faces that regulate homologous and heterologous intramembrane interactions and define two new classes of biologically active TM mutants. 相似文献
62.
Characterization of a native subunit of the NAD-linked hydrogenase isolated from a mutant of Alcaligenes eutrophus H16 总被引:4,自引:0,他引:4
The cytoplasmic, NAD-linked hydrogenase of Alcaligenes eutrophus H16 consists of four non-identical subunits. From the mutant strain HF14, defective in this enzyme, a protein was isolated that reacted with specific antibodies raised against the wild-type hydrogenase; the reaction type was of partial identity. The same protein was also tested with specific antibodies raised against each of the four denatured subunits of the wild-type hydrogenase and was found to be completely identical with the second largest subunit; it reacted weakly with the antibody against the largest subunit and not at all with the antibody against the small subunits. In SDS-polyacrylamide gel electrophoresis the protein of the mutant migrated as a single polypeptide and corresponded to the second largest subunit of soluble hydrogenase with Mr = 56,000. The mutant enzyme strongly differed from the wild-type hydrogenase in its binding behaviour to chromatographic gels. It had pronounced hydrophobic properties and bound strongly to phenyl-Sepharose; it had high affinity to triazin dye gels. Enzymatically the polypeptide was totally inactive with NAD as electron acceptor, but showed weak residual activities with methylene blue, ferricyanide and cytochrome c. The protein also contained nickel; however, because of the instability of this polypeptide the amount varied between 0.2-1.4 nickel per enzyme molecule. As shown by ESR studies, the iron is organized in a [4Fe-4S] cluster but is partially present also in the 3Fe-form. No nickel signal could be detected. The role of the polypeptide subunit for hydrogen activation in the intact hydrogenase is discussed. 相似文献
63.
C Zaborosch K Schneider H G Schlegel H Kratzin 《European journal of biochemistry》1989,181(1):175-180
The cytoplasmic, NAD-linked hydrogenase of the Gram-positive hydrogen-oxidizing bacterium Nocardia opaca 1b was compared with the analogous enzyme isolated from the Gram-negative bacterium Alcaligenes eutrophus H16. The hydrogenase of N. opaca 1b was purified by a new procedure applying chromatography on phenyl-Sepharose and DEAE-Sephacel with two columns in series. A homogeneous enzyme preparation with a specific activity of 74 mumol H2 oxidized.min-1.mg protein-1 and a yield of 32% was isolated. The A. eutrophus enzyme was purified as previously published. Both enzymes are tetrameric proteins composed of four non-identical subunits (alpha, beta, gamma, delta). The four subunits of both of these enzymes were separated and isolated as single polypeptides by preparative polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Immunological comparison of the four subunits of the Nocardia hydrogenase with those of the Alcaligenes enzyme showed that the alpha, beta, gamma, and delta subunits of one organism were serologically related to the analogous subunits of the other organism. Among themselves, the four subunits do not have any serological relationship. The eight individual polypeptides were also compared with respect to the NH2-terminal amino acid sequences determined by automated Edman degradation and to the amino acid compositions. Strong sequence similarities exist between the analogous subunits isolated from the two bacteria. Within the established N-terminal sequences the similarities between both alpha, beta, gamma and delta subunits amount to 63%, 79%, 80% and 65%, respectively. No similarities exist between the different, non-analogous subunits alpha, beta, gamma and delta. 相似文献
64.
The effects of changes in blood volume on arterial pressure patterns during the Valsalva maneuver are incompletely understood. In the present study we measured beat-to-beat arterial pressure and heart rate responses to supine Valsalva maneuvers during normovolemia, hypovolemia induced with intravenous furosemide, and hypervolemia induced with ingestion of isotonic saline. Valsalva responses were analyzed according to the four phases as previously described (W. F. Hamilton, R. A. Woodbury, and H. T. Harper, Jr. JAMA 107: 853-856, 1936; W. F. Hamilton, R. A. Woodbury, and H. T. Harper, Jr. Am. J. Physiol. 141: 42-50, 1944). Phase I is the initial onset of straining, which elicits a rise in arterial pressure; phase II is the period of straining, during which venous return is impeded and pressure falls (early) and then partially recovers (late); phase III is the initial release of straining; and phase IV consists of a rapid "overshoot" of arterial pressure after the release. During hypervolemia, early phase II arterial pressure decreases were significantly less than those during hypovolemia, thus making the response more "square." Systolic pressure hypervolemic vs. hypovolemic falls were -7.4 +/- 2.1 vs. -30.7 +/- 7 mmHg (P = 0.005). Diastolic pressure hypervolemic vs. hypovolemic falls were -2.4 +/- 1.6 vs. -15.2 +/- 2.6 mmHg (P = 0.05). A significant direct correlation was found between plasma volume and phase II systolic pressure falls, and a significant inverse correlation was found between plasma volume and phase III-IV systolic pressure overshoots. Heart rate responses to systolic pressure falls during phase II were significantly less during hypovolemia than during hypervolemia (0.7 +/- 0.2 vs. 2.82 +/- 0.2 beats. min-1. mmHg-1; P = 0.05) but were not different during phase III-IV overshoots. We conclude that acute changes in intravascular volume from hypovolemia to hypervolemia affect cardiovascular responses, particularly arterial pressure changes, to the Valsalva maneuver and should be considered in both clinical and research applications of this maneuver. 相似文献
65.
Content and localization of FMN, Fe-S clusters and nickel in the NAD-linked hydrogenase of Nocardia opaca 1b 总被引:5,自引:0,他引:5
By preparative polyacrylamide gel electrophoresis at pH 8.5, and in the absence of nickel ions, two types of subunit dimers of the NAD-linked hydrogenase from Nocardia opaca 1b were separated and isolated, and their properties were compared with each other as well as with the properties of the native enzyme. The intact hydrogenase contained 14.3 +/- 0.4 labile sulphur, 13.6 +/- 1.1 iron and 3.8 +/- 0.1 nickel atoms and approximately 1 FMN molecule per enzyme molecule. The oxidized hydrogenase showed an absorption spectrum with maxima (shoulders) at 380 nm and 420 nm and an electron spin resonance (ESR) spectrum with a signal at g = 2.01. The midpoint redox potential of the Fe-S cluster giving rise to this signal was +25 mV. In the reduced state, hydrogenase gave characteristic low-temperature (10-20 K) and high-temperature (greater than 40 K) ESR spectra which were interpreted as due to [4Fe-4S] and [2Fe-2S] clusters, respectively. The midpoint redox potentials of these clusters were determined to be -420 mV and -285 mV, respectively. The large hydrogenase dimer, consisting of subunits with relative molecular masses Mr, of 64000 and 31000, contained 9.9 +/- 0.4 S2- and 9.3 +/- 0.5 iron atoms per protein molecule. This dimer contained the FMN molecule, but no nickel. The absorption and ESR spectra of the large dimer were qualitatively similar to the spectra of the whole enzyme. This dimer did not show any hydrogenase activity, but reduced several electron acceptors with NADH as electron donor (diaphorase activity). The small hydrogenase dimer, consisting of subunits with Mr of 56000 and 27000, was demonstrated to have substantially different properties. For iron and labile sulphur average values of 3.9 and 4.3 atoms/dimer molecule have been determined, respectively. The dimer contained, in addition, about 2 atoms of nickel and was free of flavins. In the oxidized state this dimer showed an absorption spectrum with a broad band in the 400-nm region and a characteristic ESR signal at g = 2.01. The reduced form of the dimer was ESR-silent. The small dimer alone was diaphorase-inactive and did not reduce NAD with H2, but it displayed high H2-uptake activities with viologen dyes, methylene blue and FMN, and H2-evolving activity with reduced methyl viologen. Hydrogen-dependent NAD reduction was fully restored by recombining both subunit dimers, although the reconstituted enzyme differed from the original in its activity towards artificial acceptors and the ESR spectrum in the oxidized state. 相似文献
66.
Lobo PI Schlegel KH Spencer CE Okusa MD Chisholm C McHedlishvili N Park A Christ C Burtner C 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(3):1780-1791
The physiological relevance of naturally occurring IgM-ALA remains to be elucidated. These autoantibodies are present from birth and increase in diverse inflammatory states that are both infectious and noninfectious. Clinical observations showing significantly less acute allograft rejections in recipients having high IgM-ALA levels, led us to investigate whether IgM-ALA could have a functional role in attenuating T cell mediated inflammatory responses. In pursuit of this hypothesis, we did studies using IgM purified from the serum of normal individuals, patients with end stage renal disease, and HIV-1 infection. All preparations of IgM immunoprecipitated certain receptors e.g., CD3, CD4, CCR5, and CXCR4 from whole cell lysates but failed to immunoprecipitate IL-2R and HLA Ags. In physiological doses IgM down-regulated CD4, CD2 and CD86 but not CD8 and CD28, inhibited T cell proliferation, decreased production of certain proinflammatory cytokines e.g., TNF-alpha, IL-13 and IL-2, but not IFN- gamma, IL-1beta, GM-CSF, IL-6 and IL-8 and inhibited leukocyte chemotaxis. These inhibitory effects were more pronounced when using IgM from patients with high levels of IgM-ALA and these inhibitory effects were significantly reduced after using IgM preabsorbed with leukocytes. IgM-ALA binding to leukocytes was found to be highly specific, as <10% of IgM secreting B cell clones had IgM-ALA specificity with some clones having specificity for either T cells or monocytes. These findings support the concept that IgM-ALA provides an innate mechanism to regulate T cell mediated inflammatory responses. 相似文献
67.
Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H 16. 总被引:27,自引:0,他引:27
The soluble hydrogenase (hydrogen: NAD+ oxidoreductase, EC 1.12.1.2) from Alcaligenes eutrophus H 16 was purified 68-fold with a yield of 20% and a final specific activity (NAD reduction) of about 54 mumol H2 oxidized/min per mg protein. The enzyme was shown to be homogenous by polyacrylamide gel electrophoresis. Its molecular weight and isoelectric point were determined to be 205 000 and 4.85 respectively. The oxidized hydrogenase, as purified under aerobic conditions, was of high stability but not reactive. Reductive activation of the enzyme by H2, in the presence of catalytic amounts of NADH, or by reducing agents caused the hydrogenase to become unstable. The purified enzyme, in its active state, was able to reduce NAD, FMN, FAD, menaquinone, ubiquinone, cytochrome c, methylene blue, methyl viologen, benzyl viologen, phenazine methosulfate, janus green, 2,6-dichlorophenoloindophenol, ferricyanide and even oxygen. In addition to hydrogenase activitiy, the enzyme exhibited also diaphorase and NAD(P)H oxidase activity. The reversibility of hydrogenase function (i.e. H2 evolution from NADH, methyl viologen and benzyl viologen) was demonstrated. With respect to H2 as substrate, hydrogenase showed negative cooperativity; the Hill coefficient was n = 0.4. The apparent Km value for H2 was found to be 0.037 mM. The absorption spectrum of hydrogenase was typical for non-heme iron proteins, showing maxima (shoulders) at 380 and 420 nm. A flavin component could be extracted from native hydrogenase characterized by its absorption bands at 375 and 447 nm and a strong fluorescense at 526 nm. 相似文献
68.
69.
Premature expression of cyclin B sensitizes human HT1080 cells to caffeine-induced premature mitosis
Eukaryotic cells do not normally initiate mitosis when DNA replication is blocked. This cell cycle checkpoint can be bypassed in some cells, however, by treatment with caffeine and certain other chemicals. Although S-phase arrested hamster cells undergo mitosis-specific events such as premature chromosome condensation (PCC) and nuclear envelope disassembly when exposed to caffeine, human cells show little response under the same conditions. To further investigate the molecular basis of this cell type specificity, a panel of hamster/human whole cell hybrids was created. The frequency of caffeine-induced PCC and the level of cyclin B-associated H1 kinase activity in the various hybrids were directly correlated with the extent of cyclin B synthesis during S-phase arrest. To determine whether expression of cyclin B alone could sensitize human cells to caffeine, cyclin B1 was transiently overexpressed in S-phase arrested HT1080 cells. The transfected cell population displayed a 5-fold increase in the frequency of caffeine-induced PCC when compared with normal HT1080 cells, roughly equivalent to the frequency of cells expressing exogenous epitope-tagged cyclin B1. In addition, immunofluorescent microscopy showed that individual cells overexpressing cyclin B1 during S phase arrest underwent PCC when exposed to caffeine. These results provide direct evidence that premature expression of cyclin B1 can make cells more vulnerable to chemically-induced uncoupling of mitosis from the completion of DNA replication. © 1995 Wiley-Liss, Inc. 相似文献
70.