首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   8篇
  59篇
  2019年   2篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2002年   3篇
  2001年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
31.
32.
Parkinson N  Brown SD 《Genome biology》2002,3(6):comment2006.1-comment20066
The complexity of genetic pathways for hearing is beginning to be amenable to unraveling by systematic functional genomic analysis. Genome-wide mutagenesis studies in the mouse are beginning to shed further light on the structure and regulation of the machinery of hearing.  相似文献   
33.
34.
Using sequence data from the 28S ribosomal RNA (rRNA) genes of selected vertebrates, we investigated the effects that constraints imposed by secondary structure have on the phylogenetic analysis of rRNA sequence data. Our analysis indicates that characters from both base-pairing regions (stems) and non-base-pairing regions (loops) contain phylogenetic information, as judged by the level of support of the phylogenetic results compared with a well-established tree based on both morphological and molecular data. The best results (the greatest level of support of well-accepted nodes) were obtained when the complete data set was used. However, some previously supported nodes were resolved using either the stem or loop bases alone. Stem bases sustain a greater number of compensatory mutations than would be expected at random, but the number is < 40% of that expected under a hypothesis of perfect compensation to maintain secondary structure. Therefore, we suggest that in phylogenetic analyses, the weighting of stem characters be reduced by no more than 20%, relative to that of loop characters. In contrast to previous suggestions, we do not recommend weighting of stem positions by one-half, compared with that of loop positions, because this overcompensates for the constraints that selection imposes on the secondary structure of rRNA.   相似文献   
35.
BackgroundA high P-wave duration and dispersion (Pd) have been reported to be a prognostic factor for the occurrence of paroxysmal atrial fibrillation (PAF), a condition linked to obstructive sleep apnea (OSA). We tested the hypothesis of whether a short-term increase of P-wave duration and Pd can be induced by respiratory manoeuvres simulating OSA in healthy subjects and in patients with PAF.Methods12-lead-electrocardiography (ECG) was recorded continuously in 24 healthy subjects and 33 patients with PAF, while simulating obstructive apnea (Mueller manoeuvre, MM), obstructive hypopnea (inspiration through a threshold load, ITH), central apnea (AP), and during normal breathing (BL) in randomized order. The P-wave duration and Pd was calculated by using dedicated software for ECG-analysis.ResultsP-wave duration and Pd significantly increased during MM and ITH compared to BL in all subjects (+13.1ms and +13.8ms during MM; +11.7ms and +12.9ms during ITH; p<0.001 for all comparisons). In MM, the increase was larger in healthy subjects when compared to patients with PAF (p<0.05).ConclusionIntrathoracic pressure swings through simulated obstructive sleep apnea increase P-wave duration and Pd in healthy subjects and in patients with PAF. Our findings imply that intrathoracic pressure swings prolong the intra-atrial and inter-atrial conduction time and therefore may represent an independent trigger factor for the development for PAF.  相似文献   
36.

Background  

Nitric oxide and prostaglandin E2 (PGE2play pivotal roles in both the pathogenesis of osteoarthritis and catabolic processes in articular cartilage. These mediators are influenced by both IL-1β and mechanical loading, and involve alterations in the inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX)-2 enzymes. To identify the specific interactions that are activated by both types of stimuli, we examined the effects of dynamic compression on levels of expression of iNOS and COX-2 and involvement of the p38 mitogen-activated protein kinase (MAPK) pathway.  相似文献   
37.
38.
Allogeneic hematopoietic stem cell transplantation (SCT) is the only curative therapy for many malignant and nonmalignant conditions. Idiopathic pneumonia syndrome (IPS) is a frequently fatal complication that limits successful outcomes. Preclinical models suggest that IPS represents an immune mediated attack on the lung involving elements of both the adaptive and the innate immune system. However, the etiology of IPS in humans is less well understood. To explore the disease pathway and uncover potential biomarkers of disease, we performed two separate label-free, proteomics experiments defining the plasma protein profiles of allogeneic SCT patients with IPS. Samples obtained from SCT recipients without complications served as controls. The initial discovery study, intended to explore the disease pathway in humans, identified a set of 81 IPS-associated proteins. These data revealed similarities between the known IPS pathways in mice and the condition in humans, in particular in the acute phase response. In addition, pattern recognition pathways were judged to be significant as a function of development of IPS, and from this pathway we chose the lipopolysaccaharide-binding protein (LBP) protein as a candidate molecular diagnostic for IPS, and verified its increase as a function of disease using an ELISA assay. In a separately designed study, we identified protein-based classifiers that could predict, at day 0 of SCT, patients who: 1) progress to IPS and 2) respond to cytokine neutralization therapy. Using cross-validation strategies, we built highly predictive classifier models of both disease progression and therapeutic response. In sum, data generated in this report confirm previous clinical and experimental findings, provide new insights into the pathophysiology of IPS, identify potential molecular classifiers of the condition, and uncover a set of markers potentially of interest for patient stratification as a basis for individualized therapy.  相似文献   
39.
The TRPV1 ion channel is expressed in nociceptors, where pharmacological modulation of its function may offer a means of alleviating pain and neurogenic inflammation processes in the human body. The aim of this study was to investigate the effects of cholesterol depletion of the cell on ion-permeability of the TRPV1 ion channel. The ion-permeability properties of TRPV1 were assessed using whole-cell patch-clamp and YO-PRO uptake rate studies on a Chinese hamster ovary (CHO) cell line expressing this ion channel. Prolonged capsaicin-induced activation of TRPV1 with N-methyl-D-glucamine (NMDG) as the sole extracellular cation, generated a biphasic current which included an initial outward current followed by an inward current. Similarly, prolonged proton-activation (pH 5.5) of TRPV1 under hypocalcemic conditions also generated a biphasic current including a fast initial current peak followed by a larger second one. Patch-clamp recordings of reversal potentials of TRPV1 revealed an increase of the ion-permeability for NMDG during prolonged activation of this ion channel under hypocalcemic conditions. Our findings show that cholesterol depletion inhibited both the second current, and the increase in ion-permeability of the TRPV1 channel, resulting from sustained agonist-activation with capsaicin and protons (pH 5.5). These results were confirmed with YO-PRO uptake rate studies using laser scanning confocal microscopy, where cholesterol depletion was found to decrease TRPV1 mediated uptake rates of YO-PRO. Hence, these results propose a novel mechanism by which cellular cholesterol depletion modulates the function of TRPV1, which may constitute a novel approach for treatment of neurogenic pain.  相似文献   
40.
Activation of protein phosphatase 2A (PP2A) is a promising anticancer therapeutic strategy, as this tumor suppressor has the ability to coordinately downregulate multiple pathways involved in the regulation of cellular growth and proliferation. In order to understand the systems‐level perturbations mediated by PP2A activation, we carried out mass spectrometry‐based phosphoproteomic analysis of two KRAS mutated non‐small cell lung cancer (NSCLC) cell lines (A549 and H358) treated with a novel small molecule activator of PP2A (SMAP). Overall, this permitted quantification of differential signaling across over 1600 phosphoproteins and 3000 phosphosites. Kinase activity assessment and pathway enrichment implicate collective downregulation of RAS and cell cycle kinases in the case of both cell lines upon PP2A activation. However, the effects on RAS‐related signaling are attenuated for A549 compared to H358, while the effects on cell cycle‐related kinases are noticeably more prominent in A549. Network‐based analyses and validation experiments confirm these detailed differences in signaling. These studies reveal the power of phosphoproteomics studies, coupled to computational systems biology, to elucidate global patterns of phosphatase activation and understand the variations in response to PP2A activation across genetically similar NSCLC cell lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号