首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2007年   1篇
  2004年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
  1926年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
11.
Organismal movement is ubiquitous and facilitates important ecological mechanisms that drive community and metacommunity composition and hence biodiversity. In most existing ecological theories and models in biodiversity research, movement is represented simplistically, ignoring the behavioural basis of movement and consequently the variation in behaviour at species and individual levels. However, as human endeavours modify climate and land use, the behavioural processes of organisms in response to these changes, including movement, become critical to understanding the resulting biodiversity loss. Here, we draw together research from different subdisciplines in ecology to understand the impact of individual‐level movement processes on community‐level patterns in species composition and coexistence. We join the movement ecology framework with the key concepts from metacommunity theory, community assembly and modern coexistence theory using the idea of micro–macro links, where various aspects of emergent movement behaviour scale up to local and regional patterns in species mobility and mobile‐link‐generated patterns in abiotic and biotic environmental conditions. These in turn influence both individual movement and, at ecological timescales, mechanisms such as dispersal limitation, environmental filtering, and niche partitioning. We conclude by highlighting challenges to and promising future avenues for data generation, data analysis and complementary modelling approaches and provide a brief outlook on how a new behaviour‐based view on movement becomes important in understanding the responses of communities under ongoing environmental change.  相似文献   
12.
The capacity of cells to organize and contract collagen fibrils is fundamental to processes as diverse as embryogenesis and wound healing. We analyzed different beta 1 integrins on diploid fibroblasts for their role in modifying the tertiary structure of collagen matrices. Using monoclonal antibodies that block the interaction of integrins with their ligands, evidence was obtained that alpha 2 beta 1 integrin is required for the contraction of a type I collagen matrix. Further supporting the role of alpha 2 beta 1, cell lines expressing minimal levels of this integrin uniformly failed to contract collagen matrices. In addition, transfection of a full-length alpha 2 cDNA into one such cell line led to enhanced cell surface expression of alpha 2 beta 1 and conferred the de novo capacity to contract collagen matrices.  相似文献   
13.
The Madrean Sky Islands are mountain ranges isolated by a ‘desert sea’. This area is a biodiversity hotspot currently threatened by climate change. Here, we studied soil microbial communities along elevational gradients in eight Madrean Sky Islands in southeastern Arizona (USA). Our results showed that while elevational microbial richness gradients were weak and not consistent across different mountains, soil properties strongly influenced microbial community composition (overall composition and the abundance of key functional groups) along elevational gradients. In particular, warming is associated with a higher abundance of soil-borne fungal plant pathogens that concomitantly might facilitate upward elevational shifts of plant species released from negative plant–soil feedbacks. Furthermore, projected warming and drought in the area aggravated by anthropogenic nitrogen deposition on mountain tops (and thus, decreasing nitrogen limitation) can enhance a shift from ectomycorrhizal to arbuscular mycorrhizal fungi. Overall, these results indicate that climate change effects on plant–soil interactions might have profound ecosystem consequences.  相似文献   
14.
15.
Urinary citrate is an important inhibitor of calcium nephrolithiasis and is primarily determined by proximal tubule reabsorption. The major transporter to reabsorb citrate is Na(+)-dicarboxylate cotransporter (NaDC1), which transports dicarboxylates, including the divalent form of citrate. We previously found that opossum kidney (OK) proximal tubule cells variably express either divalent or trivalent citrate transport, depending on extracellular calcium. The present studies were performed to delineate the mechanism of the effect of calcium on citrate and succinate transport in these cells. Transport was measured using isotope uptake assays. In some studies, NaDC1 transport was studied in Xenopus oocytes, expressing either the rabbit or opossum ortholog. In the OK cell culture model, lowering extracellular calcium increased both citrate and succinate transport by more than twofold; the effect was specific in that glucose transport was not altered. Citrate and succinate were found to reciprocally inhibit transport at low extracellular calcium (<60 μM), but not at normal calcium (1.2 mM); this mutual inhibition is consistent with dicarboxylate transport. The inhibition varied progressively at intermediate levels of extracellular calcium. In addition to changing the relative magnitude and interaction of citrate and succinate transport, decreasing calcium also increased the affinity of the transport process for various other dicarboxylates. Also, the affinity for succinate, at low concentrations of substrate, was increased by calcium removal. In contrast, in oocytes expressing NaDC1, calcium did not have a similar effect on transport, indicating that NaDC1 could not likely account for the findings in OK cells. In summary, extracellular calcium regulates constitutive citrate and succinate transport in OK proximal tubule cells, probably via a novel transport process that is not NaDC1. The calcium effect on citrate transport parallels in vivo studies that demonstrate the regulation of urinary citrate excretion with urinary calcium excretion, a process that may be important in decreasing urinary calcium stone formation.  相似文献   
16.
To characterize VLA alpha subunit cytoplasmic domain functions, unaltered alpha 2 cDNA (called X2C2) and two chimeric cDNAs (called X2C5 and X2C4) were constructed with extracellular alpha 2 domains and cytoplasmic alpha 2, alpha 5, and alpha 4 domains respectively. Upon transfection into rhabdomyosarcoma (RD) cells, each construct yielded comparable expression levels, immunoprecipitation profiles, and avidity for collagen and laminin. However, while RDX2C2 and RDX2C5 transfectants mediated collagen gel contraction, RDX2C4 and a mock transfectant (RDpF) did not. Conversely, only RDX2C4 cells (but not RDX2C2 or RDX2C5) showed enhanced cell migration on collagen and laminin compared with RDpF cells. This indicates markedly differing roles for integrin alpha subunit cytoplasmic domains in post-ligand binding events. Furthermore, stable exertion of physical force (collagen gel contraction) may involve fundamentally different cellular machinery than the transient adhesion occurring during cell migration. Finally, these findings provide insight into a functional flexibility perhaps resulting from multiple integrins binding to identical ligands.  相似文献   
17.
Schiro G  Cupane A 《Biochemistry》2007,46(41):11568-11576
In this work, we study the kinetics of the R --> T transition in hemoglobin using a combination of near-infrared and near-ultraviolet spectroscopy. We use a sol-gel encapsulation protocol to decelerate the conformational transitions and to avoid spectral perturbations arising from ligand migration and recombination. We monitor two spectroscopic markers: band III in the near-IR, which is a fine probe of the heme pocket conformation, and the tryptophan band in the near-UV, which probes the formation of the Trpbeta37-Aspalpha94 hydrogen bond, characteristic of the T structure, at the critical alpha1beta2 subunit interface. The time evolution of these two bands is monitored after deoxygenation of encapsulated oxyhemoglobin, obtained by diffusion of a reducing agent into the porous silica matrix. Characteristic spectral shifts are observed: comparison with myoglobin enables us to assign them to quaternary structure relaxations. Band III spectral relaxation is clearly nonexponential, and analysis with the Maximum Entropy Method enables us to identify three processes. On the other hand, near-UV spectral relaxation follows an exponential decay with a time constant closely corresponding to the second process observed in the near IR. Very interestingly, the rates of all processes markedly depend on the viscosity of the co-encapsulated solvent, following a power law. Our results reveal correlations between heme pocket relaxations, induced by the R --> T transition, and structural event(s) occurring at the alpha1beta2 interface and highlight their solvent dependence. The power law viscosity dependence of relaxation rates suggests that the observed protein relaxations are "slaved" to the co-encapsulated solvent. The stepwise character of the quaternary transition is also evidenced.  相似文献   
18.
The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 disease, has killed over five million people worldwide as of December 2021 with infections rising again due to the emergence of highly transmissible variants. Animal models that faithfully recapitulate human disease are critical for assessing SARS-CoV-2 viral and immune dynamics, for understanding mechanisms of disease, and for testing vaccines and therapeutics. Pigtail macaques (PTM, Macaca nemestrina) demonstrate a rapid and severe disease course when infected with simian immunodeficiency virus (SIV), including the development of severe cardiovascular symptoms that are pertinent to COVID-19 manifestations in humans. We thus proposed this species may likewise exhibit severe COVID-19 disease upon infection with SARS-CoV-2. Here, we extensively studied a cohort of SARS-CoV-2-infected PTM euthanized either 6- or 21-days after respiratory viral challenge. We show that PTM demonstrate largely mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, including CD4+ T cells that upregulate CD8 and express cytotoxic molecules, as well as virus-targeting T cells that were predominantly CD4+. We also noted increases in inflammatory and coagulation markers in blood, pulmonary pathologic lesions, and the development of neutralizing antibodies. Together, our data demonstrate that SARS-CoV-2 infection of PTM recapitulates important features of COVID-19 and reveals new immune and viral dynamics and thus may serve as a useful animal model for studying pathogenesis and testing vaccines and therapeutics.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号