首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   33篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   6篇
  2014年   10篇
  2013年   6篇
  2012年   4篇
  2011年   9篇
  2010年   4篇
  2009年   9篇
  2008年   3篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   12篇
  2003年   2篇
  2002年   9篇
  2001年   6篇
  2000年   8篇
  1999年   6篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   8篇
  1994年   13篇
  1993年   3篇
  1992年   17篇
  1991年   11篇
  1990年   15篇
  1989年   9篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   7篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
排序方式: 共有249条查询结果,搜索用时 31 毫秒
71.
The C-terminal ends of small GTPases contain hypervariable sequences which may be posttranslationally modified by defined lipid moieties. The diverse structural motifs generated direct proteins towards specific cellular membranes or organelles. However, knowledge on the factors that determine these selective associations is limited. Here we show, using advanced microscopy, that the isoprenylation and palmitoylation motif of human RhoB (–CINCCKVL) targets chimeric proteins to intraluminal vesicles of endolysosomes in human cells, displaying preferential co-localization with components of the late endocytic pathway. Moreover, this distribution is conserved in distant species, including cells from amphibians, insects and fungi. Blocking lipidic modifications results in accumulation of CINCCKVL chimeras in the cytosol, from where they can reach endolysosomes upon release of this block. Remarkably, CINCCKVL constructs are sorted to intraluminal vesicles in a cholesterol-dependent process. In the lower species, neither the C-terminal sequence of RhoB, nor the endosomal distribution of its homologs are conserved; in spite of this, CINCCKVL constructs also reach endolysosomes in Xenopus laevis and insect cells. Strikingly, this behavior is prominent in the filamentous ascomycete fungus Aspergillus nidulans, in which GFP-CINCCKVL is sorted into endosomes and vacuoles in a lipidation-dependent manner and allows monitoring endosomal movement in live fungi. In summary, the isoprenylated and palmitoylated CINCCKVL sequence constitutes a specific structure which delineates an endolysosomal sorting strategy operative in phylogenetically diverse organisms.  相似文献   
72.
Nanopore translocation experiments are increasingly applied to probe the secondary structures of RNA and DNA molecules. Here, we report two vital steps toward establishing nanopore translocation as a tool for the systematic and quantitative analysis of polynucleotide folding: 1), Using α-hemolysin pores and a diverse set of different DNA hairpins, we demonstrate that backward nanopore force spectroscopy is particularly well suited for quantitative analysis. In contrast to forward translocation from the vestibule side of the pore, backward translocation times do not appear to be significantly affected by pore-DNA interactions. 2), We develop and verify experimentally a versatile mesoscopic theoretical framework for the quantitative analysis of translocation experiments with structured polynucleotides. The underlying model is based on sequence-dependent free energy landscapes constructed using the known thermodynamic parameters for polynucleotide basepairing. This approach limits the adjustable parameters to a small set of sequence-independent parameters. After parameter calibration, the theoretical model predicts the translocation dynamics of new sequences. These predictions can be leveraged to generate a baseline expectation even for more complicated structures where the assumptions underlying the one-dimensional free energy landscape may no longer be satisfied. Taken together, backward translocation through α-hemolysin pores combined with mesoscopic theoretical modeling is a promising approach for label-free single-molecule analysis of DNA and RNA folding.  相似文献   
73.
The composition of diatom-associated bacterial communities was studied with 14 different unialgal xenic diatom cultures isolated from freshwater epilithic biofilms of Lake Constance, Germany. A clear dominance of Alphaproteobacteria was observed, followed by Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia. Pure cultures of the diatom Cymbella microcephala, which was found to be dominant in epilithic biofilms in Lake Constance, were cocultivated with six associated bacterial strains. All these bacterial strains were able to grow in C. microcephala cultures in the absence of organic cosubstrates. Diatom growth was generally enhanced in the presence of bacteria, and polysaccharide secretion was generally increased in the presence of Proteobacteria. The monomer composition of extracellular polysaccharides of C. microcephala changed in relation to the presence of different bacteria, but the dominant monomers were less affected. Our results indicate that these changes were caused by the diatom itself rather than by specific bacterial degradation. One Bacteroidetes strain strongly influenced carbohydrate secretion by the alga via extracellular soluble compounds. Biofilms were formed only in the presence of bacteria. Phylogenetic analysis and coculture studies indicate an adaptation of Proteobacteria and Bacteroidetes to the microenvironment created by the diatom biofilm.  相似文献   
74.
In sediments, methane-oxidizing bacteria live in opposing gradients of methane and oxygen. In such a gradient system, the fluxes of methane and oxygen are controlled by diffusion and consumption rates, and the rate-limiting substrate is maintained at a minimum concentration at the layer of consumption. Opposing gradients of methane and oxygen were mimicked in a specific cultivation set-up in which growth of methanotrophic bacteria occurred as a sharp band at either c. 5 or 20 mm below the air-exposed end. Two new strains of methanotrophic bacteria were isolated with this system. One isolate, strain LC 1, belonged to the Methylomonas genus (type I methantroph) and contained soluble methane mono-oxygenase. Another isolate, strain LC 2, was related to the Methylobacter group (type I methantroph), as determined by 16S rRNA gene and pmoA sequence similarities. However, the partial pmoA sequence was only 86% related to cultured Methylobacter species. This strain accumulated significant amounts of formaldehyde in conventional cultivation with methane and oxygen, which may explain why it is preferentially enriched in a gradient cultivation system.  相似文献   
75.
Six strains of novel bacteria were isolated from profundal sediment of Lake Constance, a deep freshwater lake in Germany, by direct dilution of the sediment in mineral agar medium containing a background lawn of the hydrogen-scavenging Methanospirillum hungatei as a syntrophic partner. The numbers of colony-forming units obtained after incubation for more than 2 months were in the same range as those of total bacterial counts determined by DAPI staining (up to 10(8) cells per millilitre) suggesting that these organisms were dominant members of the community. Identical dilution series in the absence of methanogenic partners yielded numbers that were lower by two to three orders of magnitude. The dominant bacteria were isolated in defined co-culture with M. hungatei, and were further characterized. Growth was slow, with doubling times of 22-28 h at 28 degrees C. Cells were small, 0.5 x 5 microm in size, Gram-positive, and formed terminal oval spores. At 20 degrees C, glucose was fermented by the co-culture strain BoGlc83 nearly stoichiometrically to 2 mol of acetate and 1 mol of methane plus CO(2). At higher temperatures, also lactate and traces of succinate were formed. Anaerobic growth depended strictly on the presence of a hydrogen-scavenging partner organism and was inhibited by bromoethane sulfonate, which together indicate the need for a syntrophic partnership for this process. Strain BoGlc83 grew also aerobically in the absence of a partner organism. All enzymes involved in ATP formation via glycolysis and acetyl CoA were found, most of them at activities equivalent to the physiological substrate turnover rate. This new type of sugar-fermenting bacterium appears be the predominant sugar utilizer in this environment. The results show that syntrophic relationships can play an important role also for the utilization of substrates which otherwise can be degraded in pure culture.  相似文献   
76.
The anaerobic bacterium Desulfobacterium cetonicum oxidized m-cresol completely with sulfate as electron acceptor. During growth, 3-hydroxybenzylsuccinate (identified by gas chromatography/mass spectroscopy and by comparison of high-performance liquid chromatography retention time and UV spectrum with a chemically synthesized reference compound) accumulated in the medium. This finding indicates that the methyl group of m-cresol is activated by addition to fumarate as in the case of anaerobic toluene metabolism. In cell-free extracts of D. cetonicum, the formation of 3-hydroxybenzylsuccinate from m-cresol and fumarate was detected at an activity of 0.5 nmol min–1 (mg protein)–1. This reaction depended strictly on anoxic assay conditions. Treatment with air resulted in a complete loss of activity; however, some activity could be recovered after restoring anoxic conditions. The activity was slightly membrane-associated. 3-Hydroxybenzylsuccinate was degraded via CoA thioesterification and further oxidation to 3-hydroxybenzoyl-CoA as subsequent steps in the degradation pathway. Received: 20 May 1999 / Accepted: 19 July 1999  相似文献   
77.
A dialysis culture device was used for growth of syntrophic fatty acid-oxidizing and ethanol-oxidizing anaerobic bacteria. A pure culture of the fatty acid oxidizer Clostridium bryantii was grown inside dialysis tubing which was surrounded by a pure culture of Desulfovibrio vulgaris. The same apparatus was used for the syntrophic cultivation of Pelobacter acetylenicus and Acetobacterium woodii with ethanol as substrate. In both cases, substrate degradation and product formation were about half as fast as with the homogeneously mixed control cultures. In the compartment of the hydrogen producer, the concentration of free hydrogen during syntrophic ethanol degradation was about 10 times as high as in that of the hydrogen utilizer, whereas the homogeneously mixed culture exhibited an intermediate hydrogen partial pressure.  相似文献   
78.
Anaerobic, Nitrate-Dependent Microbial Oxidation of Ferrous Iron   总被引:26,自引:6,他引:20       下载免费PDF全文
Enrichment and pure cultures of nitrate-reducing bacteria were shown to grow anaerobically with ferrous iron as the only electron donor or as the additional electron donor in the presence of acetate. The newly observed bacterial process may significantly contribute to ferric iron formation in the suboxic zone of aquatic sediments.  相似文献   
79.
The syntrophically glycolate-fermenting bacterium in the methanogenic binary coculture FlGlyM was isolated in pure culture (strain FlGlyR) with glyoxylate as sole substrate. This strain disproportionated 12 glyoxylate to 7 glycolate, 10 CO2, and 3 hydrogen. Glyoxylate was oxidized via the malyl-CoA pathway. All enzymes of this pathway, i.e. malyl-CoA lyase/malate: CoA ligase, malic enzyme, and pyruvate synthase, were demonstrated in cell-free extracts. Glycolate dehydrogenase, hydrogenase, and ATPase, as well as menaquinones as potential electron carriers, were present in the membranes. Everted membrane vesicles catalyzed hydrogen-dependent glyoxylate reduction to glycolate [86–207 nmol min-1 (mg protein)-1] coupled to ATP synthesis from ADP and Pi [38–82 nmol min-1 (mg protein)-1]. ATP synthesis was abolished entirely by protonophores or ATPase inhibitors (up to 98 and 94% inhibition, respectively) indicating the involvement of proton-motive force in an electron transport phosphorylation driven by a new glyoxylate respiration with hydrogen as electron donor. Measured reaction rates in vesicle preparations revealed a stoichiometry of ATP formation of 0.2–0.5 ATP per glyoxylate reduced.Abbreviations BES 2-Bromoethanesulfonate - CCCP Carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-Dicyclohexylcarbodiimide - DCPIP 2,6-Dichlorophenolindophenol - DTE Dithioerythritol - TCS 3,5,4,5-Tetrachlorosalicylanilide - SF 6847 3,5-Di-tert-butyl-4-hydroxybenzylidenemalonitrile  相似文献   
80.
Propionibacterium freudenreichii strain DSM 20271 was grown in a mineral medium containing 0.1% (w/v) yeast extract. Acetate was oxidized by growing cells with potassium hexacyanoferrate as electron acceptor, which was oxidized by a three-electrode poised-potential system at a redox potential of +510 mV. Growth with acetate under these conditions followed linear rather than expenential kinetics, whereas growth with other substrates such as lactate under the same conditions was exponential. Cell-free extracts of P. freudenreichii cells grown with acetate contained all enzymes of the classical citric acid cycle except 2-oxoglutarate-oxidizing activity. No activity of anaplerotic reactions such as isocitrate lyase or malate synthase was found. Instead, moderate activities of glutamate decarboxylase, 4-aminobutyrate:2-oxoglutarate aminotransferase, and succinate semialdehyde dehydrogenase were detected. In short-term radiolabeling experiments with U-14C-acetate, 4-aminobutyrate was identified as a major early intermediate in acetate oxidation by these cells. These findings allow the construction of a modified citric acid cycle that compensates the lack of 2-oxoglutarate dehydrogenase by a subcycle through glutamate, 4-aminobutyrate, and succinate semialdehyde. Lack of anaplerotic reactions explains subexponential growth kinetics during growth with acetate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号