首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   737篇
  免费   70篇
  807篇
  2022年   8篇
  2021年   14篇
  2020年   13篇
  2019年   12篇
  2018年   9篇
  2017年   14篇
  2016年   9篇
  2015年   34篇
  2014年   38篇
  2013年   28篇
  2012年   40篇
  2011年   41篇
  2010年   28篇
  2009年   21篇
  2008年   26篇
  2007年   41篇
  2006年   31篇
  2005年   32篇
  2004年   21篇
  2003年   26篇
  2002年   25篇
  2001年   26篇
  2000年   29篇
  1999年   18篇
  1998年   7篇
  1997年   8篇
  1996年   10篇
  1995年   5篇
  1994年   5篇
  1992年   7篇
  1991年   6篇
  1990年   12篇
  1989年   22篇
  1988年   9篇
  1987年   14篇
  1986年   9篇
  1985年   4篇
  1984年   11篇
  1983年   8篇
  1982年   5篇
  1981年   5篇
  1979年   12篇
  1978年   6篇
  1975年   4篇
  1974年   5篇
  1973年   7篇
  1969年   3篇
  1968年   5篇
  1931年   3篇
  1853年   3篇
排序方式: 共有807条查询结果,搜索用时 15 毫秒
131.
Flap endonuclease 1 (FEN1) is a member of the family of structure-specific endonucleases implicated in regulation of DNA damage response and DNA replication. So far, knowledge on the role of FEN1 during viral infections is limited. Previous publications indicated that poxviruses encode a conserved protein that acts in a manner similar to FEN1 to stimulate homologous recombination, double-strand break (DSB) repair and full-size genome formation. Only recently, cellular FEN1 has been identified as a key component for hepatitis B virus cccDNA formation. Here, we report on a novel functional interaction between Flap endonuclease 1 (FEN1) and the human cytomegalovirus (HCMV) immediate early protein 1 (IE1). Our results provide evidence that IE1 manipulates FEN1 in an unprecedented manner: we observed that direct IE1 binding does not only enhance FEN1 protein stability but also phosphorylation at serine 187. This correlates with nucleolar exclusion of FEN1 stimulating its DSB-generating gap endonuclease activity. Depletion of FEN1 and inhibition of its enzymatic activity during HCMV infection significantly reduced nascent viral DNA synthesis demonstrating a supportive role for efficient HCMV DNA replication. Furthermore, our results indicate that FEN1 is required for the formation of DSBs during HCMV infection suggesting that IE1 acts as viral activator of FEN1 in order to re-initiate stalled replication forks. In summary, we propose a novel mechanism of viral FEN1 activation to overcome replication fork barriers at difficult-to-replicate sites in viral genomes.  相似文献   
132.
Increasing markets for biopharmaceuticals, including monoclonal antibodies, have triggered a permanent need for bioprocess optimization. Biochemical engineering approaches often include the optimization of basal and feed media to improve productivities of Chinese hamster ovary (CHO) cell cultures. Often, l ‐tyrosine is added as dipeptide to deal with its poor solubility at neutral pH. Showcasing IgG1 production with CHO cells, we investigated the supplementation of three l ‐tyrosine (TYR, Y) containing dipeptides: glycyl‐l ‐tyrosine (GY), l ‐tyrosyl‐l ‐valine (YV), and l ‐prolyl‐l ‐tyrosine (PY). While GY and YV led to almost no phenotypic and metabolic differences compared to reference samples, PY significantly amplified TYR uptake thus maximizing related catabolic activity. Consequently, ATP formation was roughly four times higher upon PY application than in reference samples.  相似文献   
133.
The effects of a recovery drink on overreaching induced by high frequency, high power resistance exercise was assessed. Resistance trained men were assigned to a supplemented (SUP, n = 8), placebo (PL, n = 3) or control (CON, n = 6) groups. All groups completed two weeks of familiarization training using the barbell squat. In week three, SUP and PL performed ten sets of five repetitions of speed squats twice daily, for a total of 15 training sessions. CON maintained their prior training schedule. Data were collected before week three (T1), after week three (T2) and after a week of recovery by training cessation (T3). During week three, SUP consumed an amino acid, carbohydrate and creatine monohydrate containing recovery drink immediately after each training bout. PL was provided a drink of similar appearance and taste but containing minimal nutritional value. At T2, both SUP and PL decreased mean squat velocity and power at 70% 1RM. Additionally, SUP and PL decreased muscle β2-adrenergic receptor (β2-AR) expression by 61 and 83%, respectively. Increases in the ratio of nocturnal urinary epinephrine/β2-AR ratio (EPI: β2AR) for SUP and PL suggested impaired sympathetic nervous system sensitivity. SUP demonstrated a smaller decrease in β2-AR expression and a lower EPI: β2AR, suggesting the recovery drink attenuated the detrimental effects of overreaching on the sympathetic activity. In conclusion, high power resistance exercise overreaching can induce performance decrements and impair sympathetic activity, but these effects may be attenuated by supplementation.  相似文献   
134.
The molecular events associated with the age-related gain of fatty tissue in human bone marrow are still largely unknown. Besides enhanced adipogenic differentiation of mesenchymal stem cells (MSCs), transdifferentiation of osteoblast progenitors may contribute to bone-related diseases like osteopenia. Transdifferentiation of MSC-derived osteoblast progenitors into adipocytes and vice versa has previously been proven feasible in our cell culture system. Here, we focus on mRNA species that are regulated during transdifferentiation and represent possible control factors for the initiation of transdifferentiation. Microarray analyses comparing transdifferentiated cells with normally differentiated cells exhibited large numbers of reproducibly regulated genes for both, adipogenic and osteogenic transdifferentiation. To evaluate the relevance of individual genes, we designed a scoring scheme to rank genes according to reproducibility, regulation level, and reciprocity between the different transdifferentiation directions. Thereby, members of several signaling pathways like FGF, IGF, and Wnt signaling showed explicitly differential expression patterns. Additional bioinformatic analysis of microarray analyses allowed us to identify potential key factors associated with transdifferentiation of adipocytes and osteoblasts, respectively. Fibroblast growth factor 1 (FGF1) was scored as one of several lead candidate gene products to modulate the transdifferentiation process and is shown here to exert inhibitory effects on adipogenic commitment and differentiation.  相似文献   
135.
136.
137.
138.
Glycans are cell-type-specific, posttranslational protein modifications that are modulated during developmental and disease processes. As such, glycoproteins are attractive biomarker candidates. Here, we describe a mass spectrometry-based workflow that incorporates lectin affinity chromatography to enrich for proteins that carry specific glycan structures. As increases in sialylation and fucosylation are prominent among cancer-associated modifications, we focused on Sambucus nigra agglutinin (SNA) and Aleuria aurantia lectin (AAL), lectins which bind sialic acid- and fucose-containing structures, respectively. Fucosylated and sialylated glycopeptides from human lactoferrin served as positive controls, and high-mannose structures from yeast invertase served as negative controls. The standards were spiked into Multiple Affinity Removal System (MARS) 14-depleted, trypsin-digested human plasma from healthy donors. Samples were loaded onto lectin columns, separated by HPLC into flow-through and bound fractions, and treated with peptide: N-glycosidase F to remove N-linked glycans. The deglycosylated peptide fractions were interrogated by ESI HPLC-MS/MS. We identified a total of 122 human plasma glycoproteins containing 247 unique glycosites. Importantly, several of the observed glycoproteins (e.g., cadherin 5 and neutrophil gelatinase-associated lipocalin) typically circulate in plasma at low nanogram per milliliter levels. Together, these results provide mass spectrometry-based evidence of the utility of incorporating lectin-separation platforms into cancer biomarker discovery pipelines.  相似文献   
139.
Identification of physiologically relevant substrates is still the most challenging part in protease research for understanding the biological activity of these enzymes. The zinc-dependent metalloprotease meprin β is known to be expressed in many tissues with functions in health and disease. Here, we demonstrate unique interactions between meprin β and the amyloid precursor protein (APP). Although APP is intensively studied as a ubiquitously expressed cell surface protein, which is involved in Alzheimer disease, its precise physiological role and relevance remain elusive. Based on a novel proteomics technique termed terminal amine isotopic labeling of substrates (TAILS), APP was identified as a substrate for meprin β. Processing of APP by meprin β was subsequently validated using in vitro and in vivo approaches. N-terminal APP fragments of about 11 and 20 kDa were found in human and mouse brain lysates but not in meprin β(-/-) mouse brain lysates. Although these APP fragments were in the range of those responsible for caspase-induced neurodegeneration, we did not detect cytotoxicity to primary neurons treated by these fragments. Our data demonstrate that meprin β is a physiologically relevant enzyme in APP processing.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号