首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   646篇
  免费   75篇
  2021年   6篇
  2019年   7篇
  2018年   6篇
  2017年   5篇
  2016年   12篇
  2015年   17篇
  2014年   17篇
  2013年   24篇
  2012年   35篇
  2011年   27篇
  2010年   18篇
  2009年   13篇
  2008年   24篇
  2007年   20篇
  2006年   19篇
  2005年   29篇
  2004年   23篇
  2003年   12篇
  2002年   19篇
  2001年   24篇
  2000年   13篇
  1999年   17篇
  1998年   13篇
  1997年   10篇
  1996年   9篇
  1995年   13篇
  1994年   7篇
  1993年   6篇
  1992年   11篇
  1991年   9篇
  1990年   8篇
  1989年   12篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   16篇
  1983年   10篇
  1982年   10篇
  1981年   9篇
  1980年   8篇
  1979年   10篇
  1978年   13篇
  1977年   15篇
  1976年   9篇
  1975年   6篇
  1974年   8篇
  1971年   6篇
  1912年   4篇
  1907年   5篇
排序方式: 共有721条查询结果,搜索用时 15 毫秒
121.
122.
Permeabilization of the outer mitochondrial membrane by pore‐forming Bcl2 proteins is a crucial step for the induction of apoptosis. Despite a large set of data suggesting global conformational changes within pro‐apoptotic Bak during pore formation, high‐resolution structural details in a membrane environment remain sparse. Here, we used NMR and HDX‐MS (Hydrogen deuterium exchange mass spectrometry) in lipid nanodiscs to gain important high‐resolution structural insights into the conformational changes of Bak at the membrane that are dependent on a direct activation by BH3‐only proteins. Furthermore, we determined the first high‐resolution structure of the Bak transmembrane helix. Upon activation, α‐helix 1 in the soluble domain of Bak dissociates from the protein and adopts an unfolded and dynamic potentially membrane‐bound state. In line with this finding, comparative protein folding experiments with Bak and anti‐apoptotic BclxL suggest that α‐helix 1 in Bak is a metastable structural element contributing to its pro‐apoptotic features. Consequently, mutagenesis experiments aimed at stabilizing α‐helix 1 yielded Bak variants with delayed pore‐forming activity. These insights will contribute to a better mechanistic understanding of Bak‐mediated membrane permeabilization.  相似文献   
123.
A conformational study by nmr spectroscopy was performed with the highly active 28-residue hybrid natriuretic peptide analogue pBNP1 [M. Mimeault, A. De Léan, M. Lafleur, D. Bonenfant, and A. Fournier (1995) Biochemistry, Vol. 34, pp. 955–964], which consists of the cyclic peptide core of pBNP32 and the N- and C-terminal exocyclic segments of rANP(99–126). In purely aqueous solution pBNP1 exhibits random coil behavior as evidenced by the almost complete absence of structurally significant nmr observables. By contrast, elements of secondary structure emerged upon the addition of dodecylphosphocholine micelles to the aqueous sample. Nuclear Overhauser effect distance-restrained molecular dynamics simulations in conjunction with torsional angle determinations permitted the generation of a reasonable model of the lipid-bound conformation of pBNP1. According to this model, pBNP1 adopts turn-like features in the cyclic and C-terminal regions of the peptide, but remains quite flexible in the N-terminal segment. Two hydrophobic cores separated by a hydrophilic cleft were also evident in the generated structure. A mechanism is proposed whereby the hydrophobic interactions necessary to stabilize a folded structure of pBNP1 are facilitated by the presence of the membrane-like polar/apolar interface provided by the phospholipid micelles. © 1997 John Wiley & Sons, Biopoly 42: 37–48, 1997  相似文献   
124.
125.
126.
The detailed comparative analysis of sperm lipids could essentially contribute to a better understanding of membrane function in the context of fertilization and, moreover, of sperm preservation. The application of sensitive analytical methods is particularly necessary for endangered species as the available amount of spermatozoa (and, accordingly, extractable lipids) is strongly limited. It will be shown that matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a fast, simple and sensitive method for the determination of the phospholipid composition of spermatozoa from several ruminantia (cattle, roe deer, Klipspringer) and feloideae species (domestic cat, Siberian tiger, fosa). Characteristic “fingerprints” are obtained from the positive ion spectra that allow the differentiation between both animal groups. In contrast to the lipid extracts of ruminantia spermatozoa which predominantly contain ether lipids including essential amounts of plasmalogens, the more complex phospholipid composition of feloideae spermatozoa is clearly dominated by diacyl phospholipids and contains only marginal amounts of plasmalogens. It will also be shown that the lipid compositions of ejaculated, electroejaculated and cauda epididymal spermatozoa of the same species are very similar and give comparable data. Therefore, the analysis of ejaculated spermatozoa is not an absolute must.  相似文献   
127.
128.
RhoGEFs are central controllers of small G-proteins in cells and are regulated by several mechanisms. There are at least 22 human RhoGEFs that contain SH3 domains, raising the possibility that, like several other enzymes, SH3 domains control the enzymatic activity of guanine nucleotide exchange factor (GEF) domains through intra- and/or intermolecular interactions. The structure of the N-terminal SH3 domain of Kalirin was solved using NMR spectroscopy, and it folds much like other SH3 domains. However, NMR chemical shift mapping experiments showed that this Kalirin SH3 domain is unique, containing novel cooperative binding site(s) for intramolecular PXXP ligands. Intramolecular Kalirin SH3 domain/ligand interactions, as well as binding of the Kalirin SH3 domain to the adaptor protein Crk, inhibit the GEF activity of Kalirin. This study establishes a novel molecular mechanism whereby intramolecular and intermolecular Kalirin SH3 domain/ligand interactions modulate GEF activity, a regulatory mechanism that is likely used by other RhoGEF family members.  相似文献   
129.
Oxidation processes of lipids are of paramount interest from many viewpoints. For instance, oxidation processes are highly important under in vivo conditions because molecules with regulatory functions are generated by oxidation of lipids or free fatty acids. Additionally, many inflammatory diseases are accompanied by lipid oxidation and, therefore, oxidation products are also useful disease (bio)markers. Thus, there is also considerable interest in methods of (oxidized) lipid analysis.Nowadays, soft ionization mass spectrometric (MS) methods are regularly used to study oxidative lipid modifications due to their high sensitivities and the extreme mass resolution. Although electrospray ionization (ESI) MS is so far most popular, applications of matrix-assisted laser desorption and ionization (MALDI) MS are increasing. This review aims to summarize the so far available data on MALDI analyses of oxidized lipids. In addition to model systems, special attention will be paid to the monitoring of oxidized lipids under in vivo conditions, particularly the oxidation of (human) lipoproteins. It is not the aim of this review to praise MALDI as the “best” method but to provide a critical survey of the advantages and drawbacks of this method.  相似文献   
130.
The adaptation of cells to a changing environment is normally accompanied by rapid and/or chronic remodeling of membrane lipids. In order to understand the role played by membrane lipid metabolism in such responses, it is necessary to characterize in more detail the changes in membrane composition occurring in response to defined stimuli. There has been intense interest in characterizing the “stem cell niche” in recent years and an emerging consensus that stem cells are located in regions of low oxygen tension and probably well-isolated from the blood supply.We report here the use of matrix-assisted laser desorption and ionization time-of-flight mass spectrometry to monitor changes in the composition and saturation degree of choline phospholipids of hematopoietic progenitor (FDCPmix) cells under standard nutrient-rich culture conditions and at low oxygen and low glucose concentrations. We found that the increase in proliferation rate driven by high concentrations of interleukin-3 (IL-3) is associated with a decrease in membrane phosphatidylcholine (PC) 18:0/20:4 and sphingomyelin (SM) together with an increase in PC 18:0/18:2 and dihydro SM. Furthermore, this effect is most pronounced under low oxygen and low glucose conditions, independent of cell proliferation rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号