The conditions of storage, cultivation and maintenance of microbial cultures should preserve the microbiological homogeneity, phenotypic and genotypic characteristics to ensure better reproducibility of metabolic production. To evaluate the influence of the storage condition on the composition of cell fatty acids, genetic profile and biochemical characteristics of Xanthomonas campestris pv. mangiferaeindicae IBSBF 2103, as well as, to identify its relationship with the yielding and viscosity of the xanthan gum produced, this study monitored the strain preserved in two simple and widely used conditions, ultra-freezer (?80 °C) and refrigeration (3–8 °C) during 5 months. Were identified and quantified 13 fatty acids. The cells preserved at ?80 °C showed more stable concentration of all fatty acids, producing more xanthan gum and with higher viscosity. The chromosomal analysis obtained with the enzyme XbaI revealed 17 distinct fragments with maximum size of 485 kilobases, without variations among the subcultures maintained in both storage conditions. The X. campestris pv. mangiferaeindicae subcultures preserved at ?80 °C showed less pronounced phenotypic variations, which had positive influence in the qualitative and quantitative characteristics of the xanthan gum produced. 相似文献
In this study, 12 samples of chum salmon from the southern and central parts of Primorye were studied with ten microsatellite loci. All studied localities of chum salmon of Primorye formed three main genetically different groups: (1) the Narva–Barabashevka–Ryazanovka cluster of southern Primorye, (2) Kievka River, and (3) Avvakumovka River. The revealed genetic heterogeneity of chum salmon showed clear population structure in accordance with the geographical location of the samples. The study suggests that, for the purposes of artificial reproduction of chum salmon, it is desirable to perform egg planting with regard to the described population structure of chum salmon of Primorye. 相似文献
The temperature dependences of tryptophan fluorescence decay kinetics in aqueous glycerol and 1 M trehalose solutions were examined. The fluorescence decay kinetics were recorded in the spectral region of 292.5–417.5 nm with nanosecond time resolution. The kinetics curves were approximated by the sum of three exponential terms, and the spectral distribution (DAS) of these components was determined. An antisymbatic course of fluorescence decay times of two (fast and medium) components in the temperature range from –60 to +10°C was observed. The third (slow) component showed only slight temperature dependence. The antisymbatic behavior of fluorescence lifetimes of the fast and medium components was explained on the assumption that some of the excited tryptophan molecules are transferred from a short-wave-length B-form with short fluorescence lifetime to a long-wavelength R-form with an intermediate fluorescence lifetime. This transfer occurred in the indicated temperature range. 相似文献
Toxigenic Aspergillus species produce mycotoxins that are carcinogenic, hepatotoxic and teratogenic immunosuppressing agents in both human and animals. Kenya frequently experiences outbreaks of aflatoxicosis with the worst occurring in 2010, which resulted in 215 deaths. We examined the possible reasons for these frequent aflatoxicosis outbreaks in Kenya by studying Aspergillus flavus diversity, phenotypes and mycotoxin profiles across various agricultural regions. Using diagonal transect random sampling, maize kernels were collected from Makueni, Homa Bay, Nandi, and Kisumu counties. Out of 37 isolates, nitrate non-utilizing auxotrophs complementation test revealed 20 vegetative compatibility groups. We designated these groups by the prefix “KVCG”, where “K” represented Kenya and consequently assigned numbers 1–20 based on our findings. KVCG14 and KVCG15 had highest distribution frequency (n = 13; 10.8 %). The distribution of the L-, S- and S-/L-morphotypes across the regions were 57 % (n = 21); 7 % (n = 3) and 36 % (n = 13), respectively. Furthermore, a unique isolate (KSM015) was identified that had characteristics of S-morphotype, but produced both aflatoxins B and G. Coconut agar medium (CAM) assay, TLC and HPLC analyses confirmed the presence or absence of aflatoxins in selected toxigenic and atoxigenic isolates. Diversity index (H′) analyses ranged from 0.11 (Nandi samples) to 0.32 (Kisumu samples). Heterokaryon compatibility ranged from 33 % (for the Makueni samples, n = 3) to 67 % (Nandi samples, n = 6). To our knowledge, this is the first reported findings for A. flavus diversity and distribution in Nandi, Homa Bay and Kisumu counties and may assist current and future researchers in the selection of biocontrol strategies to mitigate aflatoxin contamination as has been researched in Makueni and neighbouring counties. 相似文献
In this work, the binding mechanism of new Polyketide Synthase 13 (Pks13) inhibitors has been studied through molecular dynamics simulation and free energy calculations. The drug Tam1 and its analogs, belonging to the benzofuran class, were submitted to 100 ns simulations, and according to the results obtained for root mean square deviation, all the simulations converged from approximately 30 ns. For the analysis of backbone flotation, the root mean square fluctuations were plotted for the Cα atoms; analysis revealed that the greatest fluctuation occurred in the residues that are part of the protein lid domain. The binding free energy value (ΔGbind) obtained for the Tam16 lead molecule was of ?51.43 kcal/mol. When comparing this result with the ΔGbind values for the remaining analogs, the drug Tam16 was found to be the highest ranked: this result is in agreement with the experimental results obtained by Aggarwal and collaborators, where it was verified that the IC50 for Tam16 is the smallest necessary to inhibit the Pks13 (IC50 = 0.19 μM). The energy decomposition analysis suggested that the residues which most interact with inhibitors are: Ser1636, Tyr1637, Asn1640, Ala1667, Phe1670, and Tyr1674, from which the greatest energy contribution to Phe1670 was particularly notable. For the lead molecule Tam16, a hydrogen bond with the hydroxyl of the phenol not observed in the other analogs induced a more stable molecular structure. Aggarwal and colleagues reported this hydrogen bonding as being responsible for the stability of the molecule, optimizing its physic-chemical, toxicological, and pharmacokinetic properties. 相似文献
Flubendiamide is a highly toxic and persistent insecticide that causes loss of insect muscle functions leading to paralysis and death. The objective was to screen for filamentous fungi in soils where insecticides had been applied, to isolate entomopathogenic fungi from insect larva (Anticarsia gemmatalis) that infest soybean crops, and to use these in biodegradation of insecticides.
Method
Filamentous fungi were isolated from soils, and growth inhibition was evaluated on solid medium containing commercial insecticides, Belt® (flubendiamide) and Actara® (thiamethoxam). A total of 133 fungi were isolated from soil and 80 entomopathogenic fungi from insect larva. Based on growth inhibition tests, ten soil fungi, 2 entomopathogenic fungi, and Botryosphaeria rhodina MAMB-05 (reference standard) were selected for growth on commercial insecticides in solid media. Fungi were grown in submerged fermentation on media containing commercial insecticides and assayed for laccase activity.
Result
Isolates JUSOLCL039 (soil), JUANT070 (insect), and MAMB-05 performed best, and were respectively inhibited by 48.41%, 75.97%, and 79.23% when cultivated on 35 g/L Actara®, and 0.0, 5.42%, and 43.39% on 39.04 g/L Belt®. JUSOLCL039 and JUANT070 were molecularly identified as Trichoderma koningiopsis and Neurospora sp., respectively. The three fungal isolates produced laccase constitutively, albeit at low activities. Fungal growth on pure flubendiamide and thiamethoxam resulted in only thiamethoxam inducing high laccase titers (10.16 U/mL) by JUANT070. Neurospora sp. and B. rhodina degraded flubendiamide by 27.4% and 9.5% in vivo, while a crude laccase from B. rhodina degraded flubendiamide by 20.2% in vitro.
Conclusion
This is the first report of fungi capable of degrading flubendiamide, which have applications in bioremediation.
The Levantine Middle Bronze Age (MBA, circa 2000–1500 BCE) marks a period of increased trade and regional interaction, spurred on by technological developments. In light of previous research exhibiting limited mobility in Sidon, further investigation was conducted using biodistance analysis to understand local population history and site development.
Materials and Methods
Dental nonmetric traits, a proxy for genetic information, were explored using ASUDAS on a sub-sample of primary inhumations (n = 35). The biodistance matrix was generated using Gower distance measures, and further tested using PERMDISP, PERMANOVA, Mantel test and hierarchical cluster analysis. The data was also contrasted to 87Sr/86Sr and δ18O as well as δ13C and δ15N values.
Results
There were no significant diachronic differences in isotopes values, and there was biological continuity (n = 35, Mantel test r = 0.11, p = 0.02, comparing local phases and biodistance). The analysis also suggested of a sub-group of individuals with biological proximity shared a more limited range of mobility and dietary habits.
Conclusions
The isotopes (87Sr/86Sr, δ18O, δ13C, δ15N) and biodistance analysis conducted on the Sidon College site skeletal assemblage exhibits stability and continuity of the people, despite the site's increasing role in the maritime network. This continuity may have been a key factor in Sidon's success, allowing it to accumulate wealth and resources for centuries to come. 相似文献