首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   24篇
  国内免费   18篇
  492篇
  2020年   4篇
  2015年   7篇
  2014年   6篇
  2013年   10篇
  2012年   9篇
  2011年   9篇
  2010年   13篇
  2009年   10篇
  2008年   13篇
  2007年   12篇
  2006年   10篇
  2005年   8篇
  2004年   19篇
  2003年   15篇
  2002年   12篇
  2001年   11篇
  2000年   9篇
  1999年   11篇
  1998年   12篇
  1997年   5篇
  1996年   6篇
  1995年   7篇
  1994年   9篇
  1993年   4篇
  1992年   4篇
  1991年   11篇
  1990年   17篇
  1989年   14篇
  1988年   20篇
  1987年   12篇
  1986年   10篇
  1985年   18篇
  1984年   13篇
  1983年   7篇
  1982年   9篇
  1981年   4篇
  1980年   4篇
  1979年   13篇
  1978年   5篇
  1977年   19篇
  1975年   6篇
  1974年   5篇
  1973年   3篇
  1972年   7篇
  1971年   7篇
  1970年   3篇
  1969年   7篇
  1968年   6篇
  1967年   4篇
  1966年   16篇
排序方式: 共有492条查询结果,搜索用时 15 毫秒
61.
The conformations of 23 terminally blocked dipeptide sequences were examined by conformational energy calculations that included the effects of the aqueous solvent. Starting structures were derived from combinations of minimum-energy conformations of hydrated single residues. Their conformational energies were then minimized using the ECEPP potential (Empirical Conformational Energy Program for Peptides) with hydration included. Short-range interactions dominate in stabilizing the conformations of the hydrated dipeptides. Differences between conformational stabilities of hydrated and unhydrated dipeptides in many cases are due to the competition of solute–water and intramolecular hydrogen bonds. In other cases, perturbation of the hydration shell of the solute by close approach of solute atoms alters conformational preferences. Probabilities of formation of bends were calculated and compared to the corresponding quantities for unhydrated dipeptides and to those calculated from x-ray structures. For bends in dipeptides containing two nonpolar amino acids, computations omitting hydration yield better results. However, better agreement with experimental (x-ray) bend probabilities for dipeptides containing glycine or polar amino acids is obtained only in some sequences when hydration is included. The results are rationalized by the observation that, in proteins, bends containing nonpolar sequences occur on the inside, shielded from the solvent. Bends containing glycine or polar amino acids occur frequently on the surface of the protein, but they are not completely hydrated.  相似文献   
62.
63.
64.
The influence of long-range interactions on the structure of myoglobin   总被引:13,自引:0,他引:13  
R M Epand  H A Scheraga 《Biochemistry》1968,7(8):2864-2872
  相似文献   
65.
It has been suggested that the alanine-based peptide with sequence Ac-XX-[A](7)-OO-NH(2), termed XAO where X denotes diaminobutyric acid and O denotes ornithine, exists in a predominantly polyproline-helix (P(II)) conformation in aqueous solution. In our recent work, we demonstrated that this "polyproline conformation" should be regarded as a set of local conformational states rather than as the overall conformation of the molecule. In this work, we present further evidence to support this statement. Differential scanning calorimetry measurements showed only a very small peak in the heat capacity of an aqueous solution of XAO at 57 degrees C, whereas the suggested transition to the P(II) structure should occur at approximately 30 degrees C. We also demonstrate that the temperature dependence of the (3)J(HNHalpha) coupling constants of the alanine residues can be explained qualitatively in terms of Boltzmann averaging over all local conformational states; therefore, this temperature dependence proves that a conformational transition does not occur. Canonical MD simulations with the solvent represented by the generalized Born model, and with time-averaged NMR-derived restraints, demonstrate the presence of an ensemble of structures with a substantial amount of local P(II) conformational states but not with an overall P(II) conformation.  相似文献   
66.
By following a consistent line of physical reasoning, some fundamental understanding about the foldability of proteins has been achieved. In recent years, this has led to the development of a number of successful algorithms for optimizing potential energy functions for folding protein models. The differences between the folding mechanisms of simple, contact-based lattice proteins and more traditional, realistic protein models, however, still call for further development of the potentials in addition to the optimization approaches.  相似文献   
67.
Two new three-disulfide intermediates have been found to be populated in the oxidative folding pathway of bovine pancreatic ribonuclease A at a low temperature (15 degrees C). These intermediates, des-[26-84] and des-[58-110], possess all but one of the four native disulfide bonds and have a stable tertiary structure, similar to the two previously observed intermediates, des-[65-72] and des-[40-95]. While the latter two des species each lack one surface-exposed disulfide bond, the newly discovered intermediates each lack one buried disulfide bond. The possible involvement of these species in the rate-determining steps during the oxidative folding of RNase A is discussed and a specific role for such species during oxidative folding is suggested.  相似文献   
68.
The burial of native disulfide bonds, formed within stable structure in the regeneration of multi-disulfide-containing proteins from their fully reduced states, is a key step in the folding process, as the burial greatly accelerates the oxidative folding rate of the protein by sequestering the native disulfide bonds from thiol-disulfide exchange reactions. Nevertheless, several proteins retain solvent-exposed disulfide bonds in their native structures. Here, we have examined the impact of an easily reducible native disulfide bond on the oxidative folding rate of a protein. Our studies reveal that the susceptibility of the (40-95) disulfide bond of Y92G bovine pancreatic ribonuclease A (RNase A) to reduction results in a reduced rate of oxidative regeneration, compared with wild-type RNase A. In the native state of RNase A, Tyr 92 lies atop its (40-95) disulfide bond, effectively shielding this bond from the reducing agent, thereby promoting protein oxidative regeneration. Our work sheds light on the unique contribution of a local structural element in promoting the oxidative folding of a multi-disulfide-containing protein.  相似文献   
69.
Using DTT(red) as the reducing agent, the kinetics of the reductive unfolding of onconase, a frog ribonuclease, has been examined. An intermediate containing three disulfides, Ir, that is formed rapidly in the reductive pathway, is more resistant to further reduction than the parent molecule, indicating that the remaining disulfides in onconase are less accessible to DTT(red). Disulfide-bond mapping of Ir indicated that it is a single species lacking the (30-75) disulfide bond. The reductive unfolding pattern of onconase is consistent with an analysis of the exposed surface area of the cysteine sulfur atoms in the (30-75) disulfide bond, which reveals that these atoms are about four- and sevenfold, respectively, more exposed than those in the next two maximally exposed disulfides. By contrast, in the reductive unfolding of the homologue, RNase A, there are two intermediates, arising from the reduction of the (40-95) and (65-72) disulfide bonds, which takes place in parallel, and on a much longer time-scale, compared to the initial reduction of onconase; this behavior is consistent with the almost equally exposed surface areas of the cysteine sulfur atoms that form the (40-95) and (65-72) disulfide bonds in RNase A and the fourfold more exposed cysteine sulfur atoms of the (30-75) disulfide bond in onconase. Analysis and in silico mutation of the residues around the (40-95) disulfide bond in RNase A, which is analogous to the (30-75) disulfide bond of onconase, reveal that the side-chain of tyrosine 92 of RNase A, a highly conserved residue among mammalian pancreatic ribonucleases, lies atop the (40-95) disulfide bond, resulting in a shielding of the corresponding sulfur atoms from the solvent; such burial of the (30-75) sulfur atoms is absent from onconase, due to the replacement of Tyr92 by Arg73, which is situated away from the (30-75) disulfide bond and into the solvent, resulting in the large exposed surface-area of the cysteine sulfur atoms forming this bond. Removal of Tyr92 from RNase A resulted in the relatively rapid reduction of the mutant to form a single intermediate (des [40-95] Y92A), i.e. it resulted in an onconase-like reductive unfolding behavior. The reduction of the P93A mutant of RNase A proceeds through a single intermediate, the des [40-95] P93A species, as in onconase. Although mutation of Pro93 to Ala does not increase the exposed surface area of the (40-95) cysteine sulfur atoms, structural analysis of the mutant reveals that there is greater flexibility in the (40-95) disulfide bond compared to the (65-72) disulfide bond that may make the (40-95) disulfide bond much easier to expose, consistent with the reductive unfolding pathway and kinetics of P93A. Mutation of Tyr92 to Phe92 in RNase A has no effect on its reductive unfolding pathway, suggesting that the hydrogen bond between the hydroxyl group of Tyr92 and the carbonyl group of Lys37 has no impact on the local unfolding free energy required to expose the (40-95) disulfide bond. Thus, these data shed light on the differences between the reductive unfolding pathways of the two homologous proteins and provide a structural basis for the origin of this difference.  相似文献   
70.
The effects of hydration are included in empirical conformational energy computations on oligopeptides by means of a modified hydration-shell model. Free energy terms are introduced to account for “specific hydration” due to water–solute hydrogen bonding and for “nonspecific hydration” describing the interaction of the solute with water molecules in a first-neighbor shell. The dielectric constant has been doubled (over the value used for calculations in the absence of water) to take into account the presence of solvent. Computations were carried out for the N-acetyl-N′-methylamides of the 20 naturally occurring amino acids. Conformational energy maps are compared with similar maps calculated in the absence of hydration. Minimum-energy conformations are located and compared with the corresponding minima for unhydrated peptides in terms of ordering with respect to potential energy, the dihedral angles at the minima, and the presence of intramolecular hydrogen bonds. The Boltzmann factors for various conformational regions are altered significantly on hydration in some cases. These changes can be explained in terms of differences in the hydration free energy terms for various conformations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号