首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   671篇
  免费   57篇
  国内免费   1篇
  2022年   4篇
  2021年   12篇
  2020年   10篇
  2019年   5篇
  2018年   11篇
  2016年   13篇
  2015年   21篇
  2014年   26篇
  2013年   22篇
  2012年   37篇
  2011年   40篇
  2010年   36篇
  2009年   32篇
  2008年   48篇
  2007年   36篇
  2006年   29篇
  2005年   31篇
  2004年   27篇
  2003年   28篇
  2002年   26篇
  2001年   20篇
  2000年   12篇
  1999年   21篇
  1998年   12篇
  1997年   9篇
  1996年   6篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1992年   4篇
  1991年   11篇
  1990年   7篇
  1989年   9篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   6篇
  1981年   4篇
  1977年   6篇
  1976年   3篇
  1975年   5篇
  1974年   4篇
  1971年   6篇
  1970年   5篇
  1968年   3篇
  1967年   4篇
  1966年   5篇
  1965年   3篇
排序方式: 共有729条查询结果,搜索用时 15 毫秒
61.
We present the projection structures of the three outer membrane porins KdgM and KdgN from Erwinia chrysanthemi and NanC from Escherichia coli, based on 2D electron crystallography. A wide screening of 2D crystallization conditions yielded tubular crystals of a suitable size and quality to perform high-resolution electron microscopy. Data processing of untilted samples allowed us to separate the information of the two crystalline layers and resulted in projection maps to a resolution of up to 7 Å. All three proteins exhibit a similar putative β-barrel structure and the three crystal forms have the same symmetry. However, there are differences in the packing arrangements of the monomers as well as the densities of the projections. To interpret these projections, secondary structure prediction was performed using β-barrel specific prediction algorithms. The predicted transmembrane β-barrels have a high similarity in the arrangement of the putative β-strands and the loops, but do not match those of OmpG, a related protein porin whose structure was solved.  相似文献   
62.
63.
The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical 'fuels'. Increasingly, the photosynthetic machinery is being used for the production of biofuels such as bio-ethanol, biodiesel and bio-H2. Fuel production efficiency is directly dependent on the solar photon capture and conversion efficiency of the system. Green algae (e.g. Chlamydomonas reinhardtii ) have evolved genetic strategies to assemble large light-harvesting antenna complexes (LHC) to maximize light capture under low-light conditions, with the downside that under high solar irradiance, most of the absorbed photons are wasted as fluorescence and heat to protect against photodamage. This limits the production process efficiency of mass culture. We applied RNAi technology to down-regulate the entire LHC gene family simultaneously to reduce energy losses by fluorescence and heat. The mutant Stm3LR3 had significantly reduced levels of LHCI and LHCII mRNAs and proteins while chlorophyll and pigment synthesis was functional. The grana were markedly less tightly stacked, consistent with the role of LHCII. Stm3LR3 also exhibited reduced levels of fluorescence, a higher photosynthetic quantum yield and a reduced sensitivity to photoinhibition, resulting in an increased efficiency of cell cultivation under elevated light conditions. Collectively, these properties offer three advantages in terms of algal bioreactor efficiency under natural high-light levels: (i) reduced fluorescence and LHC-dependent heat losses and thus increased photosynthetic efficiencies under high-light conditions; (ii) improved light penetration properties; and (iii) potentially reduced risk of oxidative photodamage of PSII.  相似文献   
64.
Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including the model plant Arabidopsis thaliana. Currently, very little is known about the molecular or physiological processes that are activated in the host during infection and the roles these processes play in resistance and susceptibility to F. oxysporum. In this study, we analyzed global gene expression profiles of F. oxysporum-infected Arabidopsis plants. Genes involved in jasmonate biosynthesis as well as jasmonate-dependent defense were coordinately induced by F. oxysporum. Similarly, tryptophan pathway genes, including those involved in both indole-glucosinolate and auxin biosynthesis, were upregulated in both the leaves and the roots of inoculated plants. Analysis of plants expressing the DR5:GUS construct suggested that root auxin homeostasis was altered during F. oxysporum infection. However, Arabidopsis mutants with altered auxin and tryptophan-derived metabolites such as indole-glucosinolates and camalexin did not show an altered resistance to this pathogen. In contrast, several auxin-signaling mutants were more resistant to F. oxysporum. Chemical or genetic alteration of polar auxin transport also conferred increased pathogen resistance. Our results suggest that, similarly to many other pathogenic and nonpathogenic or beneficial soil organisms, F. oxysporum requires components of auxin signaling and transport to colonize the plant more effectively. Potential mechanisms of auxin signaling and transport-mediated F. oxysporum susceptibility are discussed.  相似文献   
65.
The emergence of metallo-β-lactamases (MBLs) capable of hydrolysing a broad spectrum of β-lactam antibiotics is particularly concerning for the future treatment of bacterial infections. This work describes the discovery of lead compounds for the development of new inhibitors using a competitive colorimetric assay based on the chromogenic cephalosporin CENTA, and a 500 compound Maybridge™ library suitable for fragment-based screening. The interactions between identified inhibitory fragments and the active site of the MBL from Klebsiella pneumoniae and Pseudomonas aeruginosa were probed by in silico docking studies.  相似文献   
66.
67.
Extracellular nucleotides regulate many cellular functions through activation of purinergic receptors in the plasma membrane. Here, we show that in hematopoietic stem cell (HSC), ATP is stored in vesicles and released in a calcium-sensitive manner. HSC expresses ATP responsive P2X receptors and in vitro pharmacological P2X antagonism restrained hematopoietic progenitors proliferation, but not myeloid differentiation. In mice suffering from chronic inflammation, HSCs were significantly expanded and their cycling activity was sensitive to treatment with the P2X antagonist periodate-oxidized 2,3-dialdehyde ATP. Our results indicate that ATP acts as an autocrine stimulus in regulating HSCs pool size.  相似文献   
68.
Pollen of the European and Asian white birch (Betula pendula and B. platyphylla) causes hay fever in humans. The allergenic potency of other birch species is largely unknown. To identify birch trees with a reduced allergenicity, we assessed the immunochemical characteristics of 15 species and two hybrids, representing four subgenera within the genus Betula, while focusing on the major pollen allergen Bet v 1. Antigenic and allergenic profiles of pollen extracts from these species were evaluated by SDS-PAGE and Western blot using pooled sera of birch-allergic individuals. Tryptic digests of the Bet v 1 bands were analyzed by LC-MS(E) to determine the abundance of various Bet v 1 isoforms. Bet v 1 was the most abundant pollen protein across all birch species. LC-MS(E) confirmed that pollen of all species contained a mixture of multiple Bet v 1 isoforms. Considerable differences in Bet v 1 isoform composition exist between birch species. However, isoforms that are predicted to have a high IgE-reactivity prevailed in pollen of all species. Immunoblotting confirmed that all pollen extracts were similar in immune-reactivity, implying that pollen of all birch species is likely to evoke strong allergic reactions.  相似文献   
69.
Variation in genetic background can significantly influence the phenotypic outcome of both disease and non-disease associated traits. Additionally, differences in temporal and strain specific gene expression can also contribute to phenotypes in the mammalian retina. This is the first report of microarray based cross-strain analysis of gene expression in the retina investigating genetic background effects. Microarray analyses were performed on retinas from the following mouse strains: C57BL6/J, AKR/J, CAST/EiJ, and NOD.NON-H2(-nb1) at embryonic day 18.5 (E18.5) and postnatal day 30.5 (P30.5). Over 3000 differentially expressed genes were identified between strains and developmental stages. Differential gene expression was confirmed by qRT-PCR, Western blot, and immunohistochemistry. Three major gene networks were identified that function to regulate retinal or photoreceptor development, visual perception, cellular transport, and signal transduction. Many of the genes in these networks are implicated in retinal diseases such as bradyopsia, night-blindness, and cone-rod dystrophy. Our analysis revealed strain specific variations in cone photoreceptor cell patterning and retinal function. This study highlights the substantial impact of genetic background on both development and function of the retina and the level of gene expression differences tolerated for normal retinal function. These strain specific genetic variations may also be present in other tissues. In addition, this study will provide valuable insight for the development of more accurate models for human retinal diseases.  相似文献   
70.
Dietary carbohydrate restriction (CR) presents a challenge to glucose homeostasis. Despite the popularity of CR diets, little is known regarding the metabolic effects of CR. The purpose of this study was to examine changes in whole body carbohydrate oxidation, glucose availability, endogenous glucose production, and peripheral glucose uptake after dietary CR, without the confounding influence of a negative energy balance. Postabsorptive rates of glucose appearance in plasma (R(a); i.e., endogenous glucose production) and disappearance from plasma (R(d); i.e., glucose uptake) were measured using isotope dilution methods after a conventional diet [60% carbohydrate (CHO), 30% fat, and 10% protein; kcals = 1.3 x resting energy expenditure (REE)] and after 2 days and 7 days of CR (5% CHO, 60% fat, and 35% protein; kcals = 1.3 x REE) in eight subjects (means +/- SE; 29 +/- 4 yr; BMI 24 +/- 1 kg/m(2)) during a 9-day hospital visit. Postabsorptive plasma glucose concentration was reduced (P = 0.01) after 2 days but returned to prediet levels the next day and remained at euglycemic levels throughout the diet (5.1 +/- 0.2, 4.3 +/- 0.3, and 4.8 +/- 0.4 mmol/l for prediet, 2 days and 7 days, respectively). Glucose R(a) and glucose R(d) were reduced to below prediet levels (9.8 +/- 0.6 micromol x kg(-1) x min(-1)) after 2 days of CR (7.9 +/- 0.3 micromol x kg(-1) x min(-1)) and remained suppressed after 7 days (8.3 +/- 0.4 micromol x kg(-1) x min(-1); both P < 0.001). A greater suppression in carbohydrate oxidation, compared with the reduction in glucose R(d), led to an increased (all P 相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号