首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   670篇
  免费   57篇
  国内免费   1篇
  2021年   12篇
  2020年   10篇
  2019年   5篇
  2018年   11篇
  2016年   13篇
  2015年   21篇
  2014年   26篇
  2013年   22篇
  2012年   37篇
  2011年   40篇
  2010年   36篇
  2009年   32篇
  2008年   48篇
  2007年   36篇
  2006年   29篇
  2005年   31篇
  2004年   27篇
  2003年   28篇
  2002年   26篇
  2001年   20篇
  2000年   12篇
  1999年   21篇
  1998年   12篇
  1997年   9篇
  1996年   6篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1992年   4篇
  1991年   11篇
  1990年   7篇
  1989年   9篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   6篇
  1981年   4篇
  1979年   3篇
  1977年   6篇
  1976年   3篇
  1975年   5篇
  1974年   4篇
  1971年   6篇
  1970年   5篇
  1968年   3篇
  1967年   4篇
  1966年   5篇
  1965年   3篇
排序方式: 共有728条查询结果,搜索用时 31 毫秒
51.
52.
Multi-allelic origin of congenital disorder of glycosylation (CDG)-Ic   总被引:4,自引:0,他引:4  
Congenital disorders of glycosylation (CDG), formerly known as carbohydrate-deficient glycoprotein syndrome, represent a family of genetic diseases with variable clinical presentations. Common to all types of CDG characterized to date is a defective Asn-linked glycosylation caused by enzymatic defects of N-glycan synthesis. Previously, we have identified a mutation in the ALG6 alpha1,3 glucosyltransferase gene as the cause of CDG-Ic in four related patients. Here, we present the identification of seven additional cases of CDG-Ic among a group of 35 untyped CDG patients. Analysis of lipid-linked oligosaccharides in fibroblasts confirmed the accumulation of dolichyl pyrophosphate-Man9GlcNAc2 in the CDG-Ic patients. The genomic organization of the human ALG6 gene was determined, revealing 14 exons spread over 55 kb. By polymerase chain reaction amplification and sequencing of ALG6 exons, three mutations, in addition to the previously described A333 V substitution, were detected in CDG-Ic patients. The detrimental effect of these mutations on ALG6 activity was confirmed by complementation of alg6 yeast mutants. Haplotype analysis of CDG-Ic patients revealed a founder effect for the ALG6 allele bearing the A333 V mutation. Although more than 80% of CDG are type Ia, CDG-Ic may be the second most common form of the disease.  相似文献   
53.
Mammalian and plant purple acid phosphatases have similar active site structures despite low sequence identity (<20%). Although no bacterial enzyme has been purified, a sequence database search revealed that genes that could encode potential purple acid phosphatases may be restricted to a small number of organisms (i.e. myco- and cyanobacteria). Analysis of their deduced amino acid sequences and predicted secondary structures indicates that the cyanobacterial enzyme is similar to both the mammalian and the recently discovered low-molecular-weight plant purple acid phosphatases, while the mycobacterial enzyme is homologous to the fungal and high-molecular-weight plant purple acid phosphatases. Homology models indicate that both bacterial proteins appear to be similar to mammalian purple acid phosphatases in the immediate vicinity of the active site. It is likely that these enzymes act as Fenton-type catalysts in order to prevent damage caused by reactive oxygen species generated by invaded host cells (M. tuberculosis) or by the light-harvesting complex (Synechocystis sp.).  相似文献   
54.
Cisplatin is a potent DNA-damaging agent that has demonstrated anticancer activities against several tumors. However, manifestation of cellular resistance is a major obstacle in anticancer therapy that severely limits the curative potential of cisplatin. Therefore, understanding the molecular basis of cisplatin resistance could significantly improve the clinical efficacy of this anticancer agent. Here, we employed Saccharomyces cerevisiae as a model organism to study cisplatin resistance mechanisms and describe a one-step cisplatin selection to identify and characterize novel cisplatin resistance genes. Screening a multicopy yeast genomic library enabled us to isolate several yeast clones for which we could confirm that the cisplatin resistance phenotype was linked to the introduced fragment. In a first attempt, a number of open reading frames could be identified. Among these genes, PDE2 and ZDS2 were repeatedly identified as genes whose overexpression confers cellular resistance to cisplatin. PDE2, encoding cAMP-phosphodiesterase 2, is of particular interest because the overexpression of this yeast gene is known to induce cisplatin resistance in mammalian cells as well, providing proof of the principle of our experimental approach. In addition, the identification of PDE2 shows that our yeast screening system can directly be informative for drug resistance in mammalian cells.  相似文献   
55.
This review highlights recent research on the properties and functions of the enzyme transketolase, which requires thiamin diphosphate and a divalent metal ion for its activity. The transketolase-catalysed reaction is part of the pentose phosphate pathway, where transketolase appears to control the non-oxidative branch of this pathway, although the overall flux of labelled substrates remains controversial. Yeast transketolase is one of several thiamin diphosphate dependent enzymes whose three-dimensional structures have been determined. Together with mutational analysis these structural data have led to detailed understanding of thiamin diphosphate catalysed reactions. In the homodimer transketolase the two catalytic sites, where dihydroxyethyl groups are transferred from ketose donors to aldose acceptors, are formed at the interface between the two subunits, where the thiazole and pyrimidine rings of thiamin diphosphate are bound. Transketolase is ubiquitous and more than 30 full-length sequences are known. The encoded protein sequences contain two motifs of high homology; one common to all thiamin diphosphate-dependent enzymes and the other a unique transketolase motif. All characterised transketolases have similar kinetic and physical properties, but the mammalian enzymes are more selective in substrate utilisation than the nonmammalian representatives. Since products of the transketolase-catalysed reaction serve as precursors for a number of synthetic compounds this enzyme has been exploited for industrial applications. Putative mutant forms of transketolase, once believed to predispose to disease, have not stood up to scrutiny. However, a modification of transketolase is a marker for Alzheimer’s disease, and transketolase activity in erythrocytes is a measure of thiamin nutrition. The cornea contains a particularly high transketolase concentration, consistent with the proposal that pentose phosphate pathway activity has a role in the removal of light-generated radicals.  相似文献   
56.
PurposeTo investigate the associations of time spent sedentary, in moderate-to-vigorous-intensity physical activity (MVPA) and physical activity energy expenditure (PAEE) with physical capability measures at age 60-64 years.MethodsTime spent sedentary and in MVPA and, PAEE were assessed using individually calibrated combined heart rate and movement sensing among 1727 participants from the MRC National Survey of Health and Development in England, Scotland and Wales as part of a detailed clinical assessment undertaken in 2006-2010. Multivariable linear regression models were used to examine the cross-sectional associations between standardised measures of each of these behavioural variables with grip strength, chair rise and timed up-&-go (TUG) speed and standing balance time.ResultsGreater time spent in MVPA was associated with higher levels of physical capability; adjusted mean differences in each capability measure per 1standard deviation increase in MVPA time were: grip strength (0.477 kg, 95% confidence interval (CI): 0.015 to 0.939), chair rise speed (0.429 stands/min, 95% CI: 0.093 to 0.764), standing balance time (0.028 s, 95% CI: 0.003 to 0.053) and TUG speed (0.019 m/s, 95% CI: 0.011 to 0.026). In contrast, time spent sedentary was associated with lower grip strength (-0.540 kg, 95% CI: -1.013 to -0.066) and TUG speed (-0.011 m/s, 95% CI: -0.019 to -0.004). Associations for PAEE were similar to those for MVPA.ConclusionHigher levels of MVPA and overall physical activity (PAEE) are associated with greater levels of physical capability whereas time spent sedentary is associated with lower levels of capability. Future intervention studies in older adults should focus on both the promotion of physical activity and reduction in time spent sedentary.  相似文献   
57.
Phosphorus (P) enters roots as inorganic phosphate (Pi) derived from organic and inorganic P compounds in the soil. Nucleic acids can support plant growth as the sole source of P in axenic culture but are thought to be converted into Pi by plant-derived nucleases and phosphatases prior to uptake. Here, we show that a nuclease-resistant analog of DNA is taken up by plant cells. Fluorescently labeled S-DNA of 25 bp, which is protected against enzymatic breakdown by its phosphorothioate backbone, was taken up and detected in root cells including root hairs and pollen tubes. These results indicate that current views of plant P acquisition may have to be revised to include uptake of DNA into cells. We further show that addition of DNA to Pi-containing growth medium enhanced the growth of lateral roots and root hairs even though plants were P replete and had similar biomass as plants supplied with Pi only. Exogenously supplied DNA increased length growth of pollen tubes, which were studied because they have similar elongated and polarized growth as root hairs. Our results indicate that DNA is not only taken up and used as a P source by plants, but ironically and independent of Pi supply, DNA also induces morphological changes in roots similar to those observed with P limitation. This study provides, to our knowledge, first evidence that exogenous DNA could act nonspecifically as signaling molecules for root development.Phosphorus (P) is an essential macronutrient that limits plant growth in many situations due to a low availability in soils (for review, see Schachtman et al., 1998; Raghothama, 1999; Vance et al., 2003; Lambers et al., 2008). P enters plant roots as orthophosphates (Pi) via active transport across the plasma membrane (Smith et al., 2003; Park et al., 2007; Xu et al., 2007). Concentrations of Pi in soil solution are generally very low (<10 μm; Bieleski, 1973) and plants have evolved root specializations to access P from inorganic and organic sources (Raghothama, 1999; Hinsinger, 2001; López-Bucio et al., 2003; Vance et al., 2003; Lambers et al., 2008). Roots exude enzymes and chemicals to mobilize P directly from soil compounds or indirectly via enhanced activity of soil microbes, and form symbioses with P-mobilizing mycorrhizal fungi (Schachtman et al., 1998; Raghothama, 1999; Bucher, 2007).However, similar to other nutrients, notably nitrogen, research on P nutrition of plants has focused on inorganic sources although organic P (Porg) in soil can account for 40% to 80% of the total P pool of mineral and organic soils, respectively (Bower, 1945; Raghothama, 1999; Vance et al., 2003). Porg compounds in soils are derived from plant residues, soil biota, and from synthesis by soil microbes (Jencks et al., 1964). Soil Porg is composed primarily of phospholipids, nucleic acids, and phytin (Dyer and Wrenshall, 1941). Phytic acid (inositol hexaphosphate) and its salts phytate, account for a large proportion of the Porg pool of soils (Anderson, 1980). Nucleic acids (RNA, DNA) represent approximately 1% to 2% of the soil Porg pool (Dalal, 1977). It can be released from prokaryotic and eukaryotic cells after death and protected against nuclease degradation by its adsorption on soil colloids and sand particles (Pietramellara et al., 2009).Although Porg can be a substantial constituent of the soil P pool, its contribution to the P nutrition of plants is poorly understood. Porg can be converted to Pi via root-exuded enzymes (Tarafdar and Claassen, 1988; Marschner, 1995; Vance et al., 2003). Secretion of nucleolytic enzymes and breakdown of nucleic acid were considered the reason for the observed growth of axenic Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) on nucleic acid substrates as the sole P source (Chen et al., 2000; Richardson et al., 2000).Whether plants take up intact DNA has not been reported. We recently showed that roots take up protein, possibly via endocytosis (Paungfoo-Lonhienne et al., 2008). We hypothesized that roots may take up DNA by a similar process and grew Arabidopsis in the presence of phosphorothioate oligonucleotides (S-DNA) labeled with Cy3-fluorescent dye. S-DNA has a sulfur backbone and cannot be digested by plant nucleases, allowing tracking DNA of known size into cells (Spitzer and Eckstein, 1988). We examined if S-DNA of 25 nucleotides in length enters root hairs and pollen tubes as both types of cells are strongly elongated and have similar polarized growth (Schiefelbein et al., 1993; Hepler et al., 2001). We also assessed if addition of DNA to the growth medium affects the morphology of roots and pollen tubes. Here, we present evidence that plants take up DNA and demonstrate that the presence of DNA in the growth medium enhances lateral branching of roots, and the length of root hairs and pollen tubes, irrespective of Pi supply.  相似文献   
58.
Movat's pentachrome I stain has been adapted and modified as a stain for undecalcified bone sections. After embedding in methyl methacrylate, this procedure yields consistently good results, with an excellent and colorful contrast between mineralized and unmineralized compartments of both cartilage and bone. In addition, osteoblasts, osteoclasts, and other cells and tissue components can easily be differentiated. The staining properties of the lacunar wall surrounding the osteocytes are considered to reflect various states of osteocytic activity. The method is especially useful for the study of bone growth and bone repair, and as a stain for conventional histomorphometry and computer-assisted image analysis in bone biopsies.  相似文献   
59.
Alzheimer's disease (AD) represents the fourth leading cause of death in the U.S. and the leading cause of dementia in the elderly population. Until recently, there was little hope of finding a way to prevent the underlying brain pathology from progressing toward the inevitable conclusion of the disease. However, new immunotherapeutic approaches have been described that are based on vaccination with the beta-amyloid 1-42 peptide (Abeta). The encouraging efficacy and safety of Abeta immunization in reducing neuropathology in animal models of AD has opened up new therapeutic possibilities for patients. Immunization with Abeta is aimed at reducing the Abeta-associated pathology of AD. It is hypothesized that this approach will also reduce the cascade of downstream events leading to neuronal cell loss and, ultimately, dementia. The ensuing articles in this issue describe various aspects of the Abeta immunization strategy and their potential relevance to AD treatment.  相似文献   
60.
InsP6 is an intracellular signal with several proposed functions that is synthesized by IP5K [Ins(1,3,4,5,6)P5 2-kinase]. In the present study, we overexpressed EGFP (enhanced green fluorescent protein)-IP5K fusion proteins in NRK (normal rat kidney), COS7 and H1299 cells. The results indicate that there is spatial microheterogeneity in the intracellular localization of IP5K that could also be confirmed for the endogenous enzyme. This may facilitate changes in InsP6 levels at its sites of action. For example, overexpressed IP5K showed a structured organization within the nucleus. The kinase was preferentially localized in euchromatin and nucleoli, and co-localized with mRNA. In the cytoplasm, the overexpressed IP5K showed locally high concentrations in discrete foci. The latter were attributed to stress granules by using mRNA, PABP [poly(A)-binding protein] and TIAR (TIA-1-related protein) as markers. The incidence of stress granules, in which IP5K remained highly concentrated, was further increased by puromycin treatment. Using FRAP (fluorescence recovery after photobleaching) we established that IP5K was actively transported into the nucleus. By site-directed mutagenesis we identified a nuclear import signal and a peptide segment mediating the nuclear export of IP5K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号