首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   23篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   6篇
  2013年   9篇
  2012年   10篇
  2011年   8篇
  2010年   10篇
  2009年   7篇
  2008年   7篇
  2007年   8篇
  2006年   8篇
  2005年   9篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1998年   4篇
  1997年   6篇
  1996年   6篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   4篇
  1988年   6篇
  1987年   2篇
  1986年   6篇
  1985年   2篇
  1984年   7篇
  1982年   2篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1920年   2篇
  1908年   2篇
排序方式: 共有212条查询结果,搜索用时 281 毫秒
21.
ABSTRACT: BACKGROUND: Plant biotechnology can be leveraged to produce food, fuel, medicine, and materials. Standardized methods advocated by the synthetic biology community can accelerate the plant design cycle, ultimately making plant engineering more widely accessible to bioengineers who can contribute diverse creative input to the design process. RESULTS: This paper presents work done largely by undergraduate students participating in the 2010 International Genetically Engineered Machines (iGEM) competition. Described here is a framework for engineering the model plant Arabidopsis thaliana with standardized, BioBrick compatible vectors and parts available through the Registry of Standard Biological Parts (www.partsregistry.org). This system was used to engineer a proof-of-concept plant that exogenously expresses the taste-inverting protein miraculin. CONCLUSIONS: Our work is intended to encourage future iGEM teams and other synthetic biologists to use plants as a genetic chassis. Our workflow simplifies the use of standardized parts in plant systems, allowing the construction and expression of heterologous genes in plants within the timeframe allotted for typical iGEM projects.  相似文献   
22.
23.
TAR DNA-binding protein-43 (TDP-43) is a highly conserved, ubiquitously expressed nuclear protein that was recently identified as the disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Pathogenic TDP-43 gene (TARDBP) mutations have been identified in familial ALS kindreds, and here we report a TARDBP variant (A90V) in a FTLD/ALS patient with a family history of dementia. Significantly, A90V is located between the bipartite nuclear localization signal sequence of TDP-43 and the in vitro expression of TDP-43-A90V led to its sequestration with endogenous TDP-43 as insoluble cytoplasmic aggregates. Thus, A90V may be a genetic risk factor for FTLD/ALS because it predisposes nuclear TDP-43 to redistribute to the cytoplasm and form pathological aggregates.  相似文献   
24.
    
Ohne Zusammenfassung  相似文献   
25.
26.
Effects of elastic loading on porcine trachealis muscle mechanics   总被引:1,自引:0,他引:1  
To shorten in vivo, airway smooth muscle must overcome an elastic load provided by cartilage and lung parenchyma. We examined the effects of linear elastic loads (0.2-80 g/cm) on the active changes in porcine trachealis muscle length and tension in response to electrical field stimulation in vitro. Increasing elastic loads produced an exponential decrease in the shortening and velocity of shortening while causing an increase in tension generation of muscle strips stimulated by electrical field stimulation. Shortening was decreased by 50% at a load of 8 g/cm. At small elastic loads (less than or equal to 1 g/cm) contractile responses approximated isotonic responses (shortening approximately 60% of starting length), whereas at large loads (20 g/cm) responses approximated isometric responses with minimal shortening (20%). We conclude that elastic loading significantly alters the mechanical properties of airway smooth muscle in vitro, effects that are likely relevant to the loads against which the smooth muscle must contract in vivo.  相似文献   
27.
Recombinant protein expression systems that produce high yields of pure proteins and multi‐protein complexes are essential to meet the needs of biologists, biochemists, and structural biologists using X‐ray crystallography and cryo‐electron microscopy. An ideal expression system for recombinant human proteins is cultured human cells where the correct translation and chaperone machinery are present. However, compared to bacterial expression systems, human cell cultures present several technical challenges to their use as an expression system. We developed a method that utilizes a YFP fusion‐tag to generate recombinant proteins using suspension‐cultured HEK293F cells. YFP is a dual‐function tag that enables direct visualization and fluorescence‐based selection of high expressing clones for and rapid purification using a high‐stringency, high‐affinity anti‐GFP/YFP nanobody support. We demonstrate the utility of this system by expressing two large human proteins, TOP2α (340 KDa dimer) and a TOP2β catalytic core (260 KDa dimer). This robustly and reproducibly yields >10 mg/L liter of cell culture using transient expression or 2.5 mg/L using stable expression.  相似文献   
28.
Red chlorophyll (Chl) catabolite (RCC) reductase, which catalyzes the reaction of an intermediary Chl catabolite (RCC) in the two-step cleavage reaction of pheophorbide (Pheide) a into primary fluorescent catabolites (pFCCs) during Chl breakdown, was characterized and partially purified. RCC reductase activity was present at all stages of barley leaf development and even in roots. The highest specific activity was found in senescent leaves, which were used to purify RCC reductase 1000-fold. Among the remaining three proteins, RCC reductase activity was most likely associated with a 55-kD protein. RCC reductase exhibited saturation kinetics for RCC, with an apparent Michaelis constant of 0.6 mM. The reaction depended on reduced ferredoxin and was sensitive to oxygen. Assays of purified RCC reductase with chemically synthesized RCC as a substrate yielded three different FCCs, two of which could be identified as the stereoisomeric pFCCs from canola (Brassica napus) (pFCC-1) and sweet pepper (Capsicum annuum) (pFCC-2), respectively. In the coupled reaction with Pheide a oxidase and RCC reductase, either pFCC-1 or pFCC-2 was produced, depending on the plant species employed as a source of RCC reductase. Data from 18 species suggest that the stereospecific action of RCC reductase is uniform within a plant family.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号