首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   23篇
  国内免费   1篇
  2021年   3篇
  2018年   3篇
  2017年   3篇
  2015年   3篇
  2014年   4篇
  2013年   13篇
  2012年   9篇
  2011年   3篇
  2010年   10篇
  2009年   8篇
  2008年   9篇
  2007年   11篇
  2006年   12篇
  2005年   12篇
  2004年   12篇
  2003年   9篇
  2002年   6篇
  2001年   8篇
  2000年   6篇
  1999年   10篇
  1998年   10篇
  1997年   9篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1978年   2篇
  1977年   6篇
  1976年   9篇
  1975年   2篇
  1974年   3篇
  1972年   2篇
  1971年   2篇
  1969年   4篇
  1967年   2篇
  1966年   3篇
  1963年   2篇
  1923年   1篇
排序方式: 共有279条查询结果,搜索用时 859 毫秒
81.
We have generated a BAC library from the Indonesian coelacanth, Latimeria menadoensis. This library was generated using genomic DNA of nuclei isolated from heart tissue, and has an average insert size of 171 kb. There are a total of 288 384-well microtiter dishes in the library (110,592 clones) and its genomic representation is estimated to encompass > or = 7X coverage based on the amount of DNA presumably cloned in the library as well as via hybridization with probes to a small set of single copy genes. This genomic resource has been made available to the public and should prove useful to the scientific community for many applications, including comparative genomics, molecular evolution and conservation genetics.  相似文献   
82.
83.
Green synthesis of selenium nanoparticles (SeNPs) was achieved by a simple biological procedure using the reducing power of fenugreek seed extract. This method is capable of producing SeNPs in a size range of about 50–150 nm, under ambient conditions. The synthesized nanoparticles can be separated easily from the aqueous sols by a high-speed centrifuge. These selenium nanoparticles were characterized by UV–Vis spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and elemental analysis by X-ray fluorescence spectrometer (XRF). Nanocrystalline SeNPs were obtained without post-annealing treatment. FTIR spectrum confirms the presence of various functional groups in the plant extract, which may possibly influence the reduction process and stabilization of nanoparticles. The cytotoxicity of SeNPs was assayed against human breast-cancer cells (MCF-7). It was found that SeNPs are able to inhibit the cell growth by dose-dependent manner. In addition, combination of SeNPs and doxorubicin shows better anticancer effect than individual treatments.  相似文献   
84.
The present study assesses the effects of starvation and refeeding on 1-[14C]-methyl aminoisobutyric acid (14C-MeAIB) uptake, 14C-total lipids, 14CO2 production from 14C-glycine, 14C-protein synthesis from 14C-leucine and Na+–K+-ATPase activity in jaw muscle of Neohelice granulata previously maintained on a carbohydrate-rich (HC) or high-protein (HP) diet. In N. granulata the metabolic adjustments during starvation and refeeding use different pathways according to the composition of the diet previously offered to the crabs. During starvation, 14CO2 production from 14C-glycine, and 14C-protein synthesis from 14C-leucine were reduced in HC-fed crabs. In crabs maintained on the HP or HC diet, 14C-total lipid synthesis increased after 15 days of starvation. In crabs fed HP diet, 14C-MeAIB uptake and Na+–K+-ATPase activity decreased in refeeding state. In crabs refeeding HC diet, 14C-MeAIB uptake and 14CO2 production decreased during the refeeding. In contrast, the 14C-protein synthesis increased after 120 h of refeeding. In both dietary groups, 14C-total lipid synthesis increased during refeeding. Changes in the carbon amino acid flux between different metabolic pathways in muscle are among the strategies used by this crab to face starvation and refeeding. Protein or carbohydrate levels in the diet administered to this crab modulate the carbon flux between the different metabolic pathways.  相似文献   
85.
Allergenic proteins must crosslink specific IgE molecules, bound to the surface of mast cells and basophils, to stimulate an immune response. A structural understanding of the allergen–IgE interface is needed to predict cross‐reactivities between allergens and to design hypoallergenic proteins. However, there are less than 90 experimentally determined structures available for the approximately 1500 sequences of allergens and isoallergens cataloged in the Structural Database of Allergenic Proteins. To provide reliable structural data for the remaining proteins, we previously produced more than 500 3D models using an automated procedure, with strict controls on template choice and model quality evaluation. Here, we assessed how well the fold and residue surface exposure of 10 of these models correlated with recently published experimental 3D structures determined by X‐ray crystallography or NMR. We also discuss the impact of intrinsically disordered regions on the structural comparison and epitope prediction. Overall, for seven allergens with sequence identities to the original templates higher than 27%, the backbone root‐mean square deviations were less than 2 Å between the models and the subsequently determined experimental structures for the ordered regions. Further, the surface exposure of the known IgE epitopes on the models of three major allergens, from peanut (Ara h 1), latex (Hev b 2), and soy (Gly m 4), was very similar to the experimentally determined structures. For the three remaining allergens with lower sequence identities to the modeling templates, the 3D folds were correctly identified. However, the accuracy of those models is not sufficient for a reliable epitope mapping. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
86.
87.
Abstract: Nautiloids of the superfamily Rutoceratoidea from the late Emsian (late Early Devonian) of the Prague Basin (Czech Republic) are commented upon. Species recognized include the hercoceratids Hercoceras mirum, H.? transiens, Ptenoceras proximum, P. nudum, P. minusculum and Anomaloceras anomalum, as well as the rutoceratids Adelphoceras bohemicum, Homoadelphoceras devonicans, Pseudorutoceras bolli and Goldringia? devonicans. In addition, four new species are described: Parauloceras regulare sp. nov., Roussanoffoceras chlupaci sp. nov., Otomaroceras sp. nov. and Goldringia sp. nov. Morphology and distribution patterns of Pragian and late Emsian rutoceratoid faunas from the Prague Basin are compared. They show that an increased diversity was accompanied by a higher level of specialization of rutoceratoids, which manifested itself in low abundance, increased facies dependence and greater variation in shell size during the Early Devonian. The evolution of sculpture and a contracted aperture, both regarded as protective adaptive features, was also examined, but no adaptive trend towards more pronounced sculpture and constriction of the aperture was found to have occurred in the Early Devonian. A more distinctive sculpture was, however, observed in shallow‐water assemblages of P. proximum in comparison with deeper‐water faunules, and two additional cephalopod species were examined in order to obtain comparative data. The presence of distinct sculpture patterns in coeval shallow‐ and deeper‐water assemblages suggests limited migration between them and consequently reflects some degree of territoriality in Devonian nautiloids. New data on early shell development in P. proximum are presented. During the Chote? Event, rutoceratoid generic diversity dropped dramatically, one family became extinct and the Early Devonian diversification of the group came to an end. The recovery of nautiloid faunas was slower than that of other cephalopods and associated, unrelated invertebrates. The absence of change in abundance patterns between Pragian and late Emsian rutoceratoid faunas, i.e. prior to and subsequent to ammonoid radiation, suggests that the appearance and radiation of the latter group in the early Emsian did not affect the structure of nautiloid assemblages, i.e. these two clades did not occupy the same niches.  相似文献   
88.
Apurinic/apyrimidinic endonuclease 1 (APE1), a central enzyme in the base excision repair pathway, cleaves damaged DNA in Mg(2+) dependent reaction. Despite characterization of nine X-ray crystallographic structures of human APE1, in some cases, bound to various metal ions and substrate/product, the position of the metal ion and its stoichiometry for the cleavage reaction are still being debated. While a mutation of the active site E96Q was proposed to eliminate Mg(2+) binding at the "A" site, we show experimentally that this mutant still requires Mg(2+) at concentration similar to that for the wild type enzyme to cleave the AP site in DNA. Molecular dynamics simulations of the wild type APE1, E96Q and a double missense mutant E96Q + D210N indicate that Mg(2+) placed at the A-site destabilizes the bound AP site-containing DNA. In these simulations, the H-bond chain D238-H309-AP site oxygen is broken and the substrate DNA is shifted away from its crystal structure position (1DE9). In contrast, simulations with the Mg(2+) at site B or A+B sites leave the substrate DNA at the position shown in the crystal structure (1DE9). Taken together our MD simulations and biochemical analysis suggests that Mg(2+) binding at the B site is involved in the reaction mechanism associated with endonuclease function of APE1.  相似文献   
89.
Apurinic/apyrimidinic endonuclease (APE-1) is essential for base excision repair (BER) of damaged DNA. Here molecular dynamics (MD) simulations of APE1 complexed with cleaved and uncleaved damaged DNA were used to determine the role and position of the metal ion(s) in the active site before and after DNA cleavage. The simulations started from an energy minimized wild-type structure of the metal-free APE1/damaged-DNA complex (1DE8). A grid search with one Mg2+ ion located two low energy clusters of Mg2+ consistent with the experimentally determined metal ion positions. At the start of the longer MD simulations, Mg2+ ions were placed at different positions as seen in the crystal structures and the movement of the ion was followed over the course of the trajectory. Our analysis suggests a "moving metal mechanism" in which one Mg2+ ion moves from the B- (more buried) to the A-site during substrate cleavage. The anticipated inversion of the phosphate oxygens occurs during the in-line cleavage reaction. Experimental results, which show competition between Ca2+ and Mg2+ for catalyzing the reaction, and high concentrations of Mg2+ are inhibitory, indicate that both sites cannot be simultaneously occupied for maximal activity.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号