首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   18篇
  2023年   1篇
  2021年   7篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   6篇
  2013年   5篇
  2012年   9篇
  2011年   9篇
  2010年   9篇
  2009年   6篇
  2008年   8篇
  2007年   9篇
  2006年   7篇
  2005年   7篇
  2004年   8篇
  2003年   10篇
  2002年   14篇
  2001年   10篇
  2000年   9篇
  1999年   7篇
  1998年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1988年   2篇
  1987年   1篇
  1984年   2篇
  1982年   2篇
排序方式: 共有194条查询结果,搜索用时 187 毫秒
31.
32.
Male swordtails in the genus Xiphophorus display a conspicuous ventral elongation of the caudal fin, the sword, which arose through sexual selection due to female preference. Females mate regularly and are able to store sperm for at least 6 months. If multiple mating is frequent, this would raise the intriguing question about the role of female choice and male-male competition in shaping the mating system of these fishes. Size-dependent alternate mating strategies occur in Xiphophorus; one such strategy is courtship with a sigmoid display by large dominant males, while the other is gonopodial thrusting, in which small subordinate males sneak copulations. Using microsatellite markers, we observed a frequency of multiple paternity in wild-caught Xiphophorus multilineatus in 28% of families analyzed, but the actual frequency of multiple mating suggested by the correction factor PrDM was 33%. The number of fathers contributing genetically to the brood ranged from one to three. Compared to other species in the family Poeciliidae, both frequency and degree of multiple paternity were low. Paternity was found to be highly skewed, with one male on average contributing more than 70% to the offspring. Hence in this Xiphophorus mating system, typically one male dominates and sneaker males do not appear to be particularly effective. Postcopulatory mechanisms, however, such as sperm competition, are also indicated by our data, using sex-linked phenotypes among the offspring.  相似文献   
33.
Renn J  Winkler C  Schartl M  Fischer R  Goerlich R 《Protoplasma》2006,229(2-4):209-214
Summary. Teleost fish develop bones directly from mesenchymal condensations and from cartilage precursors. At the cellular level, the involved cell populations share many features with their mammalian counterparts. In addition, several genes are already described in fish showing high homology in amino acid sequence and expression with the corresponding genes of tetrapods that are involved in bone metabolism. Therefore, analysis of the underlying molecular mechanism in fish, in particular zebrafish and medaka, will increase the knowledge in teleosts. Furthermore, it will help to identify novel genes and regulatory pathways of bone homeostasis and skeletal disorders also in higher vertebrates, including disorders caused by altered gravity. Correspondence and reprints (present address): Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Federal Republic of Germany.  相似文献   
34.
35.
36.
Teleost fishes have evolved a unique complexity and diversity of pigmentation and colour patterning that is unmatched among vertebrates. Teleost colouration is mediated by five different major types of neural‐crest derived pigment cells, while tetrapods have a smaller repertoire of such chromatophores. The genetic basis of teleost colouration has been mainly uncovered by the cloning of pigmentation genes in mutants of zebrafish Danio rerio and medaka Oryzias latipes. Many of these teleost pigmentation genes were already known as key players in mammalian pigmentation, suggesting partial conservation of the corresponding developmental programme among vertebrates. Strikingly, teleost fishes have additional copies of many pigmentation genes compared with tetrapods, mainly as a result of a whole‐genome duplication that occurred 320–350 million years ago at the base of the teleost lineage, the so‐called fish‐specific genome duplication. Furthermore, teleosts have retained several duplicated pigmentation genes from earlier rounds of genome duplication in the vertebrate lineage, which were lost in other vertebrate groups. It was hypothesized that divergent evolution of such duplicated genes may have played an important role in pigmentation diversity and complexity in teleost fishes, which therefore not only provide important insights into the evolution of the vertebrate pigmentary system but also allow us to study the significance of genome duplications for vertebrate biodiversity.  相似文献   
37.
38.
Genes related to the Drosophila melanogaster doublesex and Caenorhabditis elegans mab-3 genes are conserved in human. They are identified by a DNA-binding homology motif, the DM domain, and constitute a gene family (DMRTs). Unlike the invertebrate genes, whose role in the sex-determination process is essentially understood, the function of the different vertebrate DMRT genes is not as clear. Evidence has accumulated for the involvement of DMRT1 in male sex determination and differentiation. DMRT2 (known as terra in zebrafish) seems to be a critical factor for somitogenesis. To contribute to a better understanding of the function of this important gene family, we have analyzed DMRT1, DMRT2, and DMRT3 from the genome model organism Fugu rubripes and the medakafish, a complementary model organism for genetics and functional studies. We found conservation of synteny of human chromosome 9 in F. rubripes and an identical gene cluster organization of the DMRTs in both fish. Although expression analysis and gene linkage mapping in medaka exclude a function for any of the three genes in the primary step of male sex determination, comparison of F. rubripes and human sequences uncovered three putative regulatory regions that might have a role in more downstream events of sex determination and human XY sex reversal.  相似文献   
39.
40.
The gynogenetic livebearing Amazon molly (Poecilia formosa) is a sexual parasite that exploits males of closely related species for sperm. This is needed as physiological stimulus for embryo development; however, none of the male’s genes are normally incorporated into the genome of the gynogenetic offspring. Mostly diploid individuals were reported from the natural habitats in North-Eastern Mexico and South-Eastern Texas but stable populations of triploids have been reported from the Río Soto la Marina drainage and in the Río Guayalejo in North-Eastern Mexico. Triploidy is the result of defects in the mechanisms that normally clear the host sperm from the ameiotic diploid egg. Triploids also reproduce gynogenetically and their frequencies fluctuate markedly between years, seasons, and localities. To understand the dynamics of this mating system, it is important to understand the relative reproductive success of triploids and diploids. We hypothesize that triploids should have a selective advantage over diploids due to heterosis and/or gene redundancy based on the additional genetic material from the sexual host. However, clonal competition experiments revealed a clear reproductive advantage of diploids competing with triploids. This result contradicts not only our hypothesis but also the stable co-existence of diploids and triploids in natural habitats. Frequency dependent selection, niche partitioning and environmental heterogeneity are discussed as possible explanations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号