首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1178篇
  免费   97篇
  2023年   4篇
  2022年   16篇
  2021年   46篇
  2020年   14篇
  2019年   32篇
  2018年   23篇
  2017年   21篇
  2016年   52篇
  2015年   61篇
  2014年   87篇
  2013年   84篇
  2012年   104篇
  2011年   97篇
  2010年   63篇
  2009年   62篇
  2008年   65篇
  2007年   55篇
  2006年   44篇
  2005年   37篇
  2004年   35篇
  2003年   25篇
  2002年   25篇
  2001年   13篇
  2000年   6篇
  1999年   15篇
  1998年   7篇
  1997年   10篇
  1995年   3篇
  1994年   5篇
  1993年   6篇
  1992年   7篇
  1991年   5篇
  1990年   6篇
  1988年   4篇
  1987年   3篇
  1986年   7篇
  1983年   4篇
  1982年   5篇
  1981年   9篇
  1980年   6篇
  1979年   8篇
  1978年   8篇
  1977年   6篇
  1976年   6篇
  1975年   8篇
  1974年   15篇
  1973年   14篇
  1972年   8篇
  1971年   3篇
  1966年   4篇
排序方式: 共有1275条查询结果,搜索用时 515 毫秒
111.
The novel Synchrotron Radiation Circular Dichroism (SRCD) technique is becoming a new tool of investigation for the molecular structures of biomolecules, like proteins, carbohydrates or others bio-materials. Here, we describe the characteristics of a new experimental end-station for circular dichroism studies, in construction on DISCO beamline at SOLEIL synchrotron (Saint-Aubin, France). This experimental end-station will be an open facility for the community of researchers in structural biology. In order to show the kind of information accessible with this type of technique, we give an example: the conformational study of the galactose mutarotase from Escherichia coli, an enzyme involved in the galactose metabolism. This study was made using an operational SRCD station available at SRS (Daresbury Laboratory, UK).  相似文献   
112.
While several morphometric analyses in lemurids have focused on the craniofacial complex, the characterization of their mandibular morphology has received less attention. The mandibular outline, in lateral perspective, was quantified using elliptical Fourier analysis, in an osteological sample encompassing 189 lemurid mandibles (66 Eulemur, 51 Hapalemur, 22 Lemur and 50 Varecia), and compared using multivariate statistical techniques. The taxonomic value of this outline in Lemuridae was demonstrated by the existence of significant separations between the four genera studied. In particular, the mandibular morphology of Hapalemur was markedly different from that in the group Eulemur-Lemur-Varecia. Excluding Hapalemur from analysis, the distinctions between Eulemur, Lemur and Varecia were enhanced suggesting the existence of more subtle intergeneric differences in mandibular morphology. Variation in mandibular form was greatest in Hapalemur and smallest in Eulemur and Varecia (as demonstrated by the mean values of interindividual distances); variation was higher in Lemur than in Eulemur and Varecia, but not higher than in Hapalemur. This morphological diversity may be related to functional adaptation in response to particular dietary habits. The patterns of intergeneric and intrageneric shape variations of the mandible in Lemuridae presented here provide a valuable resource for the analysis of variation among living and fossil lemurids.  相似文献   
113.
Direct interactions between G-protein betagamma subunits and N- or P/Q-type Ca(2+) channels mediate the inhibitory action of several neurotransmitters in the brain. Membrane potential, channel phosphorylation, or auxiliary subunit association tightly regulate these interactions and the consequent inhibition of Ca(2+) current. We now provide evidence that intracellular Ca(2+) concentration and phosphoinositides play a stabilizing role in this direct voltage-dependent inhibition. Lowering resting cytosolic Ca(2+) concentration in Xenopus oocytes expressing Ca(V)2Ca(2+) channels strongly decreased basal as well as phasic, agonist-dependent inhibition of Ca(2+) channels by G-proteins. Decreasing phosphoinositide levels also suppressed G-protein inhibition and completely occluded the effects of a subsequent injection of Ca(2+) chelator. Similar regulations are observed in mouse dorsal root ganglia neurons. Alteration of G-protein block by these agents is independent of protein phosphorylation, cytoskeleton dynamics, and GTPase or GDP/GTP exchange activity, suggesting a direct action at the level of the Ca(2+) channel/Gbetagamma-protein interaction. Moreover, affinity binding experiments of intracellular loops of the Ca(V)2.1 Ca(2+) channels to different phospholipids revealed specific interactions between the C-terminal tail of the channel and phosphoinositides. Taken together these data indicate that a Ca(2+)-sensitive interaction of the C-terminal tail of P/Q channels with the plasma membrane is important for G-protein regulation.  相似文献   
114.
Xanthomonas campestris pv. campestris, the causal agent of black rot disease of brassicas, is known for its ability to catabolize a wide range of plant compounds. This ability is correlated with the presence of specific carbohydrate utilization loci containing TonB-dependent transporters (CUT loci) devoted to scavenging specific carbohydrates. In this study, we demonstrate that there is an X. campestris pv. campestris CUT system involved in the import and catabolism of N-acetylglucosamine (GlcNAc). Expression of genes belonging to this GlcNAc CUT system is under the control of GlcNAc via the LacI family NagR and GntR family NagQ regulators. Analysis of the NagR and NagQ regulons confirmed that GlcNAc utilization involves NagA and NagB-II enzymes responsible for the conversion of GlcNAc-6-phosphate to fructose-6-phosphate. Mutants with mutations in the corresponding genes are sensitive to GlcNAc, as previously reported for Escherichia coli. This GlcNAc sensitivity and analysis of the NagQ and NagR regulons were used to dissect the X. campestris pv. campestris GlcNAc utilization pathway. This analysis revealed specific features, including the fact that uptake of GlcNAc through the inner membrane occurs via a major facilitator superfamily transporter and the fact that this amino sugar is phosphorylated by two proteins belonging to the glucokinase family, NagK-IIA and NagK-IIB. However, NagK-IIA seems to play a more important role in GlcNAc utilization than NagK-IIB under our experimental conditions. The X. campestris pv. campestris GlcNAc NagR regulon includes four genes encoding TonB-dependent active transporters (TBDTs). However, the results of transport experiments suggest that GlcNAc passively diffuses through the bacterial envelope, an observation that calls into question whether GlcNAc is a natural substrate for these TBDTs and consequently is the source of GlcNAc for this nonchitinolytic plant-associated bacterium.Xanthomonas campestris pv. campestris, the causal agent of black rot disease of brassicas, produces extracellular plant cell wall-degrading enzymes which contribute to its pathogenicity by facilitating its spread through plant tissues and give the bacterium access to a ready source of nutrients via the carbohydrate utilization loci containing TonB-dependent transporters (CUT loci) (7, 16, 35). The CUT loci are characterized by the presence of genes encoding regulators, degradative enzymes, inner membrane transporters, and outer membrane TonB-dependent transporters (TBDTs), which have been identified as active carbohydrate transporters (7, 33, 44). However, recently, an example of passive diffusion through a TBDT in Caulobacter crescentus was described (17). X. campestris pv. campestris has 72 TBDTs and belongs to a class of bacteria in which TBDTs are overrepresented (7). Our previous study suggested that there are several CUT loci or systems in this bacterium (7).N-Acetylglucosamine (GlcNAc) is an amino sugar that is used for the synthesis of cell surface structures in bacteria and plays an important role in supplying carbon and energy by entering the glycolytic pathway after it is converted into fructose-6-phosphate (fructose-6P) (1, 9). In a recent comparative study of bacterial GlcNAc utilization pathways and regulatory networks, Yang and coworkers identified conserved and distinct features of the GlcNAc utilization pathway in proteobacteria (48). The expression of X. campestris pv. campestris GlcNAc-specific genes was proposed to be controlled by NagR and NagQ regulators belonging to the LacI and GntR families, respectively. In X. campestris pv. campestris strain ATCC 33913, one predicted binding motif specific for NagQ (designated the NagQ box) consists of two imperfect repeats of the TGGTATT sequence separated by 4 bp and is located upstream of the nagQ gene (XCC3414) (Fig. (Fig.1A)1A) (48). This gene is part of the nag cluster and is followed by genes encoding the major facilitator superfamily (MFS) inner membrane transporter NagP (XCC3413), the regulator NagR (XCC3412), the GlcN-6P deaminase NagB-II (XCC3411), and the GlcNAc-6P deacetylase NagA (XCC3410) (Fig. (Fig.1A).1A). NagR boxes contain the palindromic sequence AATGACARCGYTGTCATT (bold type indicates less highly conserved nucleotides) and are upstream of genes encoding two glucokinase-like NagK-II proteins (XCC2886 [nagK-IIA] and XCC2943 [nagK-IIB]), as well as 5 genes encoding TBDTs (XCC0531, XCC2887, XCC3045, XCC3408, and XCC2944 located downstream of XCC2943) (Fig. (Fig.1A).1A). All of the X. campestris pv. campestris genes located downstream of NagR or NagQ boxes were proposed to belong to a GlcNAc utilization pathway involved in uptake of GlcNAc through the bacterial envelope and subsequent phosphorylation, deacetylation, and deamination, which finally leads to the common metabolic intermediate fructose-6-phosphate (Fig. (Fig.1B)1B) (48). It was recently demonstrated that in C. crescentus the TBDT CC0446 gene, which is clustered with other nag genes, is responsible for the uptake of GlcNAc (17). The presence of TBDTs in the GlcNAc regulon, which has been observed in Alteromonadales and Xanthomonadales (48), suggests that genes belonging to the GlcNAc utilization pathway define a new CUT system.Open in a separate windowFIG. 1.X. campestris pv. campestris N-acetylglucosamine (GlcNAc) utilization pathway. (A) Organization of genes in the proposed GlcNAc utilization pathway. NagR boxes are indicated by filled circles, and the NagQ box is indicated by an open circle. (B) GlcNAc is proposed to be transported through the outer membrane by TBDTs and then transported across the inner membrane by the MFS transporter NagP. GlcNAc would then be phosphorylated by nagK-II-encoded enzymes. Subsequent metabolism via the nagA-encoded (GlcNAc-6P deacetylase) and nagB-II-encoded (GlcN-6P deaminase) enzymes results in fructose 6-phosphate (Fru-6P) (48). MFS, major facilitator superfamily; PP, periplasm; TBDT, TonB-dependent transporter.Here we describe characterization of the X. campestris pv. campestris GlcNAc utilization pathway and regulatory network, which involves at least the repressors NagR and NagQ. TBDTs are associated with this pathway, confirming the presence of a GlcNAc CUT system in X. campestris pv. campestris. In this bacterium, GlcNAc entry and catabolism imply that novel families containing a GlcNAc inner membrane transporter and GlcNAc kinases are involved.  相似文献   
115.
116.
117.
Recombinant antibodies: towards a new generation of antivenoms?   总被引:1,自引:0,他引:1  
Poisoning by scorpion venoms is a major health hazard in tropical and subtropical regions and serum therapy, which was discovered in 1894, remains the only specific treatment. No real progress has been made since this time and the therapeutic use of antivenoms which still consists in polyclonal antibody fragments from the sera of immunized animals may be associated with major drawbacks. Protein engineering now allows to design novel recombinant antibody fragments which are superior to polyclonal antivenoms in homogeneity, specific activity and possibly safety. Several single-chain antibody fragments (scFvs) which neutralize scorpion toxins have been produced and characterized over the last few years. These scFvs can also be used as building blocks to engineer more complex structures including multivalent monospecific antibody fragments (diabodies, triabodies) and bispecific molecules (tandem-scFv). Some of these molecules neutralize scorpion neurotoxins and protect mice from experimental envenoming. Thus, research projects currently underway suggest that new strategies might soon be available to treat poisonings in the absence of socio-economic considerations.  相似文献   
118.
In the present study, the toxicity of yperite, SM, and its structural analogue mechlorethamine, HN2, was investigated in a human bronchial epithelial cell line 16HBE. Cell detachment was initiated by caspase-2 activation, down-regulation of Bcl-2 and loss of mitochondrial membrane potential. Only in detached cells, mustards induced apoptosis associated with increase in p53 expression, Bax activation, decrease in Bcl-2 expression, opening of the mitochondrial permeability transition pore, release of cytochrome c, caspase-2, -3, -8, -9 and -13 activation and DNA fragmentation. Apoptosis, occurring only in detached cells, could be recognized as anoikis and the mitochondrion, involved both in cell detachment and subsequent cell death, appears to be a crucial checkpoint. Based on our understanding of the apoptotic pathway triggered by mustards, we demonstrated that inhibition of the mitochondrial pathway by ebselen, melatonin and cyclosporine A markedly prevented mustard-induced anoikis, pointing to these drugs as interesting candidates for the treatment of mustard-induced airway epithelial lesions. This work was support by the Délégation Générale pour l’Armement (D.G.A./D.S.P. No. 95-151). A. Deniaud received a fellowship from Ligue contre le Cancer. C. Brenner is supported by the Association pour la Recherche sur le Cancer (ARC). The authors are grateful to D.C. Gruenert for providing us with the human bronchial epithelial cell line.  相似文献   
119.
During the excavations of the XIX century Meadowlark cemetery (Manhattan, Kansas, US), samples of sediments were taken from around five skeletons, and analyzed to detect intestinal parasites. No helminth eggs were found, but immunological ELISA tests for Entamoeba histolytica were positive in three samples. The immunological techniques have been successfully used in paleoparasitology to detect protozoan infections. Amoebiasis could have been a severe disease in the past, especially where poor sanitary conditions prevailed, and there is evidence that this cemetery may have been used in a situation where poor sanitary conditions may have prevailed. The presence of this protozoan in US during the late XIX century gives information on the health of the population and provides additional data on the parasite's evolution since its appearance in the New World.  相似文献   
120.
Human occupation for several centuries was recorded in the archaeological layers of "Place d'Armes", Namur, Belgium. Preventive archaeological excavations were carried out between 1996/1997 and seven historical strata were observed, from Gallo-Roman period up to Modern Times. Soil samples from cesspools, latrines, and structures-like were studied and revealed intestinal parasite eggs in the different archaeological contexts. Ascaris lumbricoides, A. suum, Trichuris trichiura, T. suis. Taenia sp., Fasciola hepatica, Diphyllobothrium sp., Capillaria sp. and Oxyuris equi eggs were found. Paleoparasitology confirmed the use of structures as latrines or cesspit as firstly supposed by the archaeologists. Medieval latrines were not only used for rejection of human excrements. The finding of Ascaris sp. and Trichuris sp. eggs may point to human's or wild swine's feces. Gallo-Roman people used to eat wild boar. Therefore, both A. suum and T. suis, or A. lumbricoides and T. trichuris, may be present, considering a swine carcass recovered into a cesspit. Careful sediment analysis may reveal its origin, although parasites of domestic animals can be found together with those of human's. Taenia sp. eggs identified in latrine samples indicate ingestion of uncooked beef with cysticercoid larvae. F. hepatica eggs suggest the ingestion of raw contaminated vegetables and Diphyllobothrium sp. eggs indicate contaminated fresh-water fish consumption. Ascaris sp. and Trichuris sp. eggs indicate fecal-oral infection by human and/or animal excrements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号