首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7452篇
  免费   1045篇
  8497篇
  2023年   43篇
  2022年   100篇
  2021年   174篇
  2020年   107篇
  2019年   141篇
  2018年   157篇
  2017年   120篇
  2016年   230篇
  2015年   374篇
  2014年   427篇
  2013年   462篇
  2012年   663篇
  2011年   646篇
  2010年   434篇
  2009年   356篇
  2008年   454篇
  2007年   504篇
  2006年   508篇
  2005年   521篇
  2004年   463篇
  2003年   377篇
  2002年   413篇
  2001年   52篇
  2000年   33篇
  1999年   65篇
  1998年   73篇
  1997年   50篇
  1996年   45篇
  1995年   43篇
  1994年   40篇
  1993年   40篇
  1992年   44篇
  1991年   22篇
  1990年   24篇
  1989年   26篇
  1988年   17篇
  1987年   27篇
  1986年   24篇
  1985年   18篇
  1984年   18篇
  1983年   11篇
  1982年   19篇
  1981年   17篇
  1980年   20篇
  1979年   15篇
  1978年   12篇
  1977年   9篇
  1976年   11篇
  1975年   8篇
  1974年   9篇
排序方式: 共有8497条查询结果,搜索用时 15 毫秒
61.
62.
The CFTR (cystic fibrosis transmembrane conductance regulator) protein is a large polytopic protein whose biogenesis is inefficient. To better understand the regulation of CFTR processing and trafficking, we conducted a genetic screen that identified COMMD1 as a new CFTR partner. COMMD1 is a protein associated with multiple cellular pathways, including the regulation of hepatic copper excretion, sodium uptake through interaction with ENaC (epithelial sodium channel) and NF-kappaB signaling. In this study, we show that COMMD1 interacts with CFTR in cells expressing both proteins endogenously. This interaction promotes CFTR cell surface expression as assessed by biotinylation experiments in heterologously expressing cells through regulation of CFTR ubiquitination. In summary, our data demonstrate that CFTR is protected from ubiquitination by COMMD1, which sustains CFTR expression at the plasma membrane. Thus, increasing COMMD1 expression may provide an approach to simultaneously inhibit ENaC absorption and enhance CFTR trafficking, two major issues in cystic fibrosis.  相似文献   
63.
Stromal cell-derived factor-1 (SDF-1)/CXCL12, the ligand for CXCR4, induces signal transduction. We previously showed that CXCL12 binds to high- and low-affinity sites expressed by primary cells and cell lines, and forms complexes with CXCR4 as expected and also with a proteoglycan, syndecan-4, but does not form complexes with syndecan-1, syndecan-2, CD44 or beta-glycan. We also demonstrated the occurrence of a CXCL12-independent heteromeric complex between CXCR4 and syndecan-4. However, our data ruled out the glycosaminoglycan-dependent binding of CXCL12 to HeLa cells facilitating the binding of this chemokine to CXCR4. Here, we demonstrate that CXCL12 directly binds to syndecan-4 in a glycosaminoglycan-dependent manner. We show that upon stimulation of HeLa cells by CXCL12, CXCR4 becomes tyrosine phosphorylated as expected, while syndecan-4 (but not syndecan-1, syndecan-2 or beta-glycan) also undergoes such tyrosine phosphorylation. Moreover, tyrosine-phosphorylated syndecan-4 from CXCL12-stimulated HeLa cells physically coassociates with tyrosine phosphorylated CXCR4. Pretreatment of the cells with heparitinases I and III prevented the tyrosine phosphorylation of syndecan-4, which suggests that the heparan sulfate-dependent binding of SDF-1 to this proteoglycan is involved. Finally, by reducing syndecan-4 expression using RNA interference or by pretreating the cells with heparitinase I and III mixture, we suggest the involvement of syndecan-4 and heparan sulfate in p44/p42 mitogen-activated protein kinase and Jun N-terminal/stress-activated protein kinase activation by action of CXCL12 on HeLa cells. However, these treatments did not modify the calcium mobilization induced by CXCL12 in these cells. Therefore, syndecan-4 behaves as a CXCL12 receptor, selectively involved in some transduction pathways induced by SDF-1, and heparan sulfate plays a role in these events.  相似文献   
64.
Bats and their associated guano microbiota provide important terrestrial and subterranean ecosystem services and serve as a reservoir for a wide range of epizootic and zoonotic diseases. Unfortunately, large‐scale studies of bats and their guano microbiotas are limited by the time and cost of sample collection, which requires specially trained individuals to work at night to capture bats when they are most active. Indirectly surveying bat gut microbiota through guano deposits could be a more cost‐effective alternative, but it must first be established whether the postdefecation exposure to an aerobic environment has a large impact on the guano microbial community. A number of recent studies on mammalian feces have shown that the impact of aerobic exposure is highly species specific; therefore, it is difficult to predict how exposure will affect the bat guano microbiota without empirical data. In our study, we collected fresh guano samples from 24 individuals of 10 bat species that are common throughout the arid environments of the American southwest and subjected the samples to 0, 1, and 12 hr of exposure. The biodiversity decreased rapidly after the shift from an anaerobic to an aerobic environment—much faster than previously reported in mammalian species. However, the relative composition of the core guano microbiota remained stable and, using highly sensitive targeted PCR methods, we found that pathogens present in the original, non‐exposed samples could still be recovered after 12 hr of exposure. These results suggest that with careful sample analysis protocols, a more efficient passive collection strategy is feasible; for example, guano could be collected on tarps placed near the roost entrance. Such passive collection methods would greatly reduce the cost of sample collection by allowing more sites or roosts to be surveyed with a fraction of trained personnel, time, and effort investments needed.  相似文献   
65.
The impact of process environment changes on process performance is one of the most crucial process safety issues when cultivating mammalian cells in a bioreactor. In contrast, directed shifting of process parameters can also be used as an optimization tool providing higher cell and product yields. Compared to other strategies that also aim on the regulation of cell growth and protein expression process parameter shifts can be easily performed without reagent addition or even genetic modification of the host cell line. However, a successful application of changing process conditions implies a profound understanding of the provoked physiological changes within the cells. In a systematic approach we varied the dissolved oxygen tension (DOT), pH, and temperature of CHO cultures in controlled bioreactors and investigated the impact on growth, productivity, metabolism, product quality and cell cycle distribution using a recombinant CHO cell line expressing the highly glycosylated fusion protein Epo-Fc. We found the reduction of cultivation temperature and the reduction of (external) pH to exert the most significant effects on process performance by mainly reducing cell growth and metabolism. With respect to the cell line used we identified a set of parameters capable of affecting cell proliferation in favor of an increased specific productivity and total product yield. The well directed alteration of the process environment has emerged as a tool adequate for further process optimization applying a biphasic cultivation strategy.  相似文献   
66.
Sustained positive BOLD (blood oxygen level-dependent) activity is employed extensively in functional magnetic resonance imaging (fMRI) studies as evidence for task or stimulus-specific neural responses. However, the presence of sustained negative BOLD activity (i.e., sustained responses that are lower than the fixation baseline) has remained more difficult to interpret. Some studies suggest that it results from local "blood stealing" wherein blood is diverted to neurally active regions without a concomitant change of neural activity in the negative BOLD regions. However, other evidence suggests that negative BOLD is a result of local neural suppression. In both cases, regions of negative BOLD response are usually interpreted as carrying relatively little, if any, stimulus-specific information (hence the predominant reliance on positive BOLD activity in fMRI). Here we show that the negative BOLD response resulting from visual stimulation can carry high information content that is stimulus-specific. Using a general linear model (GLM), we contrasted standard flickering stimuli to a fixation baseline and found regions of the visual cortex that displayed a sustained negative BOLD response, consistent with several previous studies. Within these negative BOLD regions, we compared patterns of fMRI activity generated by flickering Gabors that were systematically shifted in position. As the Gabors were shifted further from each other, the correlation in the spatial pattern of activity across a population of voxels (such as the population of V1 voxels that displayed a negative BOLD response) decreased significantly. Despite the fact that the BOLD signal was significantly negative (lower than fixation baseline), these regions were able to discriminate objects separated by less than 0.5 deg (at approximately 10 deg eccentricity). The results suggest that meaningful, stimulus-specific processing occurs even in regions that display a strong negative BOLD response.  相似文献   
67.
68.
The adipose tissue-derived hormone leptin regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene (ob/ob mice) are hypothermic and cold intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (T(C)), and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared with wild-type controls. POMC-Ptp1b(-/-) mice were hypersensitive to leptin-induced food intake and body weight suppression compared with wild types, yet they displayed similar leptin-induced increases in T(C). Interestingly, POMC-Ptp1b(-/-) mice had increased BAT weight and elevated plasma triiodothyronine (T(3)) levels in response to a 4-day cold challenge, as well as reduced SPA 24 h after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of SPA and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.  相似文献   
69.
A congeneric series of benzamidine-type ligands with a central proline moiety and a terminal cycloalkyl group—linked by a secondary amine, ether, or methylene bridge—was synthesized as trypsin inhibitors. This series of inhibitors was investigated by isothermal titration calorimetry, crystal structure analysis in two crystal forms, and molecular dynamics simulations. Even though all of these congeneric ligands exhibited essentially the same affinity for trypsin, their binding profiles at the structural, dynamic, and thermodynamic levels are very distinct. The ligands display a pronounced enthalpy/entropy compensation that results in a nearly unchanged free energy of binding, even though individual enthalpy and entropy terms change significantly across the series. Crystal structures revealed that the secondary amine-linked analogs scatter over two distinct conformational families of binding modes that occupy either the inside or of the outside the protein's S3/S4 specificity pocket. In contrast, the ether-linked and methylene-linked ligands preferentially occupy the hydrophobic specificity pocket. This also explains why the latter ligands could only be crystallized in the conformationally restricting closed crystal form whereas the derivative with the highest residual mobility in the series escaped our attempts to crystallize it in the closed form; instead, a well-resolved structure could only be achieved in the open form with the ligand in disordered orientation. These distinct binding modes are supported by molecular dynamics simulations and correlate with the shifting enthalpic/entropic signatures of ligand binding. The examples demonstrate that, at the molecular level, binding modes and thermodynamic binding signatures can be very different even for closely related ligands. However, deviating binding profiles provide the opportunity to optimally address a given target.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号