首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3760篇
  免费   333篇
  国内免费   2篇
  4095篇
  2022年   30篇
  2021年   53篇
  2020年   50篇
  2019年   49篇
  2018年   43篇
  2017年   52篇
  2016年   93篇
  2015年   148篇
  2014年   177篇
  2013年   224篇
  2012年   298篇
  2011年   288篇
  2010年   181篇
  2009年   163篇
  2008年   219篇
  2007年   234篇
  2006年   223篇
  2005年   230篇
  2004年   236篇
  2003年   197篇
  2002年   206篇
  2001年   37篇
  2000年   22篇
  1999年   45篇
  1998年   51篇
  1997年   46篇
  1996年   33篇
  1995年   28篇
  1994年   23篇
  1993年   42篇
  1992年   29篇
  1991年   25篇
  1990年   26篇
  1989年   31篇
  1988年   21篇
  1987年   18篇
  1986年   20篇
  1985年   16篇
  1984年   18篇
  1983年   17篇
  1982年   17篇
  1981年   16篇
  1980年   9篇
  1979年   15篇
  1978年   12篇
  1977年   12篇
  1976年   10篇
  1974年   10篇
  1968年   6篇
  1967年   5篇
排序方式: 共有4095条查询结果,搜索用时 15 毫秒
91.
The dry bulb mite, Aceria tulipae, is the most important pest of stored tulip bulbs in The Netherlands. This tiny, eriophyoid mite hides in the narrow space between scales in the interior of the bulb. To achieve biological control of this hidden pest, candidate predators small enough to move in between the bulb scales are required. Earlier experiments have shown this potential for the phytoseiid mite, Neoseiulus cucumeris, but only after the bulbs were exposed to ethylene, a plant hormone that causes a slight increase in the distance between tulip bulb scales, just sufficient to allow this predator to reach the interior part of the bulb. Applying ethylene, however, is not an option in practice because it causes malformation of tulip flowers. In fact, to prevent this cosmetic damage, bulb growers ventilate rooms where tulip bulbs are stored, thereby removing ethylene produced by the bulbs (e.g. in response to mite or fungus infestation). Recently, studies on the role of predatory mites in controlling another eriophyoid mite on coconuts led to the discovery of an exceptionally small phytoseiid mite, Neoseiulus paspalivorus. This predator is able to move under the perianth of coconuts where coconut mites feed on meristematic tissue of the fruit. This discovery prompted us to test N. paspalivorus for its ability to control A. tulipae on tulip bulbs under storage conditions (ventilated rooms with bulbs in open boxes; 23 °C; storage period June–October). Using destructive sampling we monitored predator and prey populations in two series of replicated experiments, one at a high initial level of dry bulb mite infestation, late in the storage period, and another at a low initial dry bulb mite infestation, halfway the storage period. The first and the second series involved treatment with N. paspalivorus and a control experiment, but the second series had an additional treatment in which the predator N. cucumeris was released. Taking the two series of experiments together we found that N. paspalivorus controlled the populations of dry bulb mites both on the outer scale of the bulbs as well as in the interior part of the bulbs, whereas N. cucumeris significantly reduced the population of dry bulb mites on the outer scale, but not in the interior part of the bulb. Moreover, N. paspalivorus was found predominantly inside the bulb, whereas N. cucumeris was only found on the outer scale, thereby confirming our hypothesis that the small size of N. paspalivorus facilitates access to the interior of the bulbs. We argue that N. paspalivorus is a promising candidate for the biological control of dry bulb mites on tulip bulbs under storage conditions in the Netherlands.  相似文献   
92.
Aberrant DNA methylation occurs early in oncogenesis, is stable, and can be assayed in tissues and body fluids. Therefore, genes with aberrant methylation can provide clues for understanding tumor pathways and are attractive candidates for detection of early neoplastic events. Identification of sequences that optimally discriminate cancer from other diseased and healthy tissues is needed to advance both approaches. Using well-characterized specimens, genome-wide methylation techniques were used to identify candidate markers specific for colorectal neoplasia. To further validate 30 of these candidates from genome-wide analysis and 13 literature-derived genes, including genes involved in cancer and others with unknown functions, a high-throughput methylation-specific oligonucleotide microarray was used. The arrays were probed with bisulfite-converted DNA from 89 colorectal adenocarcinomas, 55 colorectal polyps, 31 inflammatory bowel disease, 115 extracolonic cancers, and 67 healthy tissues. The 20 most discriminating markers were highly methylated in colorectal neoplasia (area under the receiver operating characteristic curve > 0.8; P < 0.0001). Normal epithelium and extracolonic cancers revealed significantly lower methylation. Real-time PCR assays developed for 11 markers were tested on an independent set of 149 samples from colorectal adenocarcinomas, other diseases, and healthy tissues. Microarray results could be reproduced for 10 of 11 marker assays, including eight of the most discriminating markers (area under the receiver operating characteristic curve > 0.72; P < 0.009). The markers with high specificity for colorectal cancer have potential as blood-based screening markers whereas markers that are specific for multiple cancers could potentially be used as prognostic indicators, as biomarkers for therapeutic response monitoring or other diagnostic applications, compelling further investigation into their use in clinical testing and overall roles in tumorigenesis.  相似文献   
93.
In this study, we examined the roleof insulin in the control of vascular smooth muscle cell (VSMC)migration in the normal vasculature. Platelet-derived growth factor(PDGF) increased VSMC migration, which was inhibited by pretreatmentwith insulin in a dose-dependent manner. Insulin also caused a 60%decrease in PDGF-stimulated mitogen-activated protein kinase (MAPK)phosphorylation and activation. Insulin inhibition of MAPK wasaccompanied by a rapid induction of MAPK phosphatase (MKP-1), whichinactivates MAPKs by dephosphorylation. Pretreatment with inhibitors ofthe nitric oxide (NO)/cGMP pathway, blocked insulin-induced MKP-1 expression and restored PDGF-stimulated MAPK activation and migration. In contrast, adenoviral infection of VSMCs with MKP-1 or cGMP-dependent protein kinase I (cGK I), the downstream effector of cGMPsignaling, blocked the activation of MAPK and prevented PDGF-directedVSMC migration. Expression of antisense MKP-1 RNA prevented insulin's inhibitory effect and restored PDGF-directed VSMC migration and MAPKphosphorylation. We conclude that insulin inhibition of VSMC migrationmay be mediated in part by NO/cGMP/cGK I induction of MKP-1 andconsequent inactivation of MAPKs.

  相似文献   
94.
Bis(monoacylglycero)phosphate (BMP) is an endosomal lipid with a unique structure that is implicated in the formation of intraendosomal vesicular bodies. Here we have characterized the effects of dioleoyl-BMP (BMP18:1) at concentrations of 5, 10, 15 and 20 mol% on the thermotropic behavior of dipalmitoyl phosphatidylcholine (DPPC) vesicles, and compared them to those of equimolar concentrations of dioleoyl phosphatidylglycerol (DOPG), a structural isoform of BMP18:1. Because BMP is found in the acidic environments of the late endosome and intralysosomal vesicles, samples were prepared at pH 4.2 to mimic the pH of the lysosome. Both 2H NMR of perdeuterated DPPC and spin-labeled EPR with 16-doxyl phosphatidylcholine were utilized in these investigations. NMR and EPR results show that BMP18:1 induces a lowering in the main phase transition temperature of DPPC similar to that of DOPG. The EPR studies reveal that BMP18:1 induced more disorder in the Lβ phase when compared to equimolar concentrations of DOPG. Analysis from dePaked 2H NMR spectra in the Lα phase reveals that BMP18:1 induces less disorder than equal concentrations of DOPG. Additionally, the results demonstrate that BMP mixes with other phospholipids as a phospholipid and not as a detergent molecule as once speculated.  相似文献   
95.
The cyanobacterium Microcystis can produce microcystins, a family of toxins that are of major concern in water management. In several lakes, the average microcystin content per cell gradually declines from high levels at the onset of Microcystis blooms to low levels at the height of the bloom. Such seasonal dynamics might result from a succession of toxic to nontoxic strains. To investigate this hypothesis, we ran competition experiments with two toxic and two nontoxic Microcystis strains using light-limited chemostats. The population dynamics of these closely related strains were monitored by means of characteristic changes in light absorbance spectra and by PCR amplification of the rRNA internal transcribed spacer region in combination with denaturing gradient gel electrophoresis, which allowed identification and semiquantification of the competing strains. In all experiments, the toxic strains lost competition for light from nontoxic strains. As a consequence, the total microcystin concentrations in the competition experiments gradually declined. We did not find evidence for allelopathic interactions, as nontoxic strains became dominant even when toxic strains were given a major initial advantage. These findings show that, in our experiments, nontoxic strains of Microcystis were better competitors for light than toxic strains. The generality of this finding deserves further investigation with other Microcystis strains. The competitive replacement of toxic by nontoxic strains offers a plausible explanation for the gradual decrease in average toxicity per cell during the development of dense Microcystis blooms.  相似文献   
96.
The trophodynamics of pelagic and benthic animals of the North Sea, North Atlantic shelf, were assessed using stable isotope analysis (SIA) of natural abundance carbon and nitrogen isotopes, lipid fingerprinting and compound-specific SIA (CSIA) of phospholipid-derived fatty acids (PLFAs). Zooplankton (z), epi- and supra-benthic macrofauna were collected in the Southern Bight, at the Oyster Grounds and at North Dogger, 111 km north of the Dogger Bank. The study included 22 taxonomic groups with particular reference to Mollusca (Bivalvia and Gastropoda) and Crustacea. Primary consumers (Bivalvia) were overall most 15N enriched in the southern North Sea (6.1‰) and more depleted in the Oyster Grounds (5.5‰) and at North Dogger (2.8‰) demonstrating differences in isotopic baselines for bivalve fauna between the study sites. Higher trophic levels also followed this trend. Over an annual cycle, consumers tended to exhibit 15N depletion during spring followed by 15N enriched signatures in autumn and winter. The observed seasonal changes of δ 15N were more pronounced for suspension feeders and deposit feeders (dfs) than for filter feeders (ffs). The position of animals in plots of δ 13C and δ 15N largely concurred with the expected position according to literature-based functional feeding groups. PLFA fingerprints of groups such as z were distinct from benthic groups, e.g. benthic ffs and dfs, and predatory macrobenthos. δ 13CPLFA signatures indicated similarities in 13C moiety sources that constituted δ 13CPLFA. Although functional groups of pelagic zooplankton and (supra-) benthic animals represented phylogenetically distinct consumer groups, δ 13CPLFA demonstrated that both groups were supported by pelagic primary production and relied on the same macronutrients such as PLFAs. Errors related to the static categorization of small invertebrates into fixed trophic positions defined by phylogenetic groupings rather than by functional feeding groups, and information on seasonal trophodynamic variability, may have implications for the reliability of numerical marine ecosystem models.  相似文献   
97.
The MHC class Ib molecule Qa-1 binds specifically and predominantly to a single 9-aa peptide (AMAPRTLLL) derived from the leader sequence of many MHC class Ia proteins. This peptide is referred to as Qdm. In this study, we report the isolation and sequencing of a heat shock protein 60-derived peptide (GMKFDRGYI) from Qa-1. This peptide is the dominant peptide bound to Qa-1 in the absence of Qdm. A Qa-1-restricted CTL clone recognizes this heat shock protein 60 peptide, further verifying that it binds to Qa-1 and a peptide from the homologous Salmonella typhimurium protein GroEL (GMQFDRGYL). These observations have implications for how Qa-1 can influence NK cell and T cell effector function via the TCR and CD94/NKG2 family members, and how this effect can change under conditions that cause the peptides bound to Qa-1 to change.  相似文献   
98.
Mutations identified in the hypoxanthine phosphoribosyltransferase (HPRT) gene of patients with Lesch-Nyhan (LN) syndrome are dominated by simple base substitutions. Few hotspot positions have been identified, and only three large genomic rearrangements have been characterized at the molecular level. We have identified one novel mutation, two tentative hot spot mutations, and two deletions by direct sequencing of HPRT cDNA or genomic DNA from fibroblasts or T-lymphocytes from LN patients in five unrelated families. One is a missense mutation caused by a 610C→T transition of the first base of HPRT exon 9. This mutation has not been described previously in an LN patient. A nonsense mutation caused by a 508C→T transition at a CpG site in HPRT exon 7 in the second patient and his younger brother is the fifth mutation of this kind among LN patients. Another tentative hotspot mutation in the third patient, a frame shift caused by a G nucleotide insertion in a monotonous repeat of six Gs in HPRT exon 3, has been reported previously in three other LN patients. The fourth patient had a tandem deletion: a 57-bp deletion in an internally repeated Alu-sequence of intron 1 was separated by 14 bp from a 627-bp deletion that included HPRT exon 2 and was flanked by a 4-bp repeat. This complex mutation is probably caused by a combination of homologous recombination and replication slippage. Another large genomic deletion of 2969 bp in the fifth patient extended from one Alu-sequence in the promoter region to another Alu-sequence of intron 1, deleting the whole of HPRT exon 1. The breakpoints were located within two 39-bp homologous sequences, one of which overlapped with a well-conserved 26-bp Alu-core sequence previously suggested as promoting recombination. These results contribute to the establishment of a molecular spectrum of LN mutations, support previous data indicating possible mutational hotspots, and provide evidence for the involvement of Alu-mediated recombination in HPRT deletion mutagenesis. Received: 21 April 1998 / Accepted: 16 July 1998  相似文献   
99.
Cicer anatolicum, a perennial species, has ascochyta blight resistance superior to that found in the cultivated chickpea. However, hybridization barriers during early stages of embryo development curtail access to this trait. Since hormones play an essential role in early embryo development, we have determined the hormone profiles of 4-, 8-, and 12-day old seeds from a Canadian chickpea (Cicer arietinum L.) cv. CDC Xena, from Indian cvs. Swetha and Bharati, and from a perennial accession of C. anatolicum (PI 383626). Indole-3-acetic acid content peaked on day 4 in CDC Xena, on day 8 in both Indian cultivars but only on day 12 in C. anatolicum. The cytokinins, isopentenyladenosine (iPA) and trans zeatin riboside (tZR) were predominant in CDC Xena and Swetha seeds on day 4, whereas cis zeatin riboside was the major component in Bharati. In C. anatolicum, iPA maxed out on day 4 and tZR on day 12. The bioactive gibberellin GA1 spiked on day 4 in CDC Xena and Bharati, on day 8 in Swetha but only on day 12 in C. anatolicum. Eight-day old seeds had the highest abscisic acid content in the cultivars but spiked on day 12 in the perennial species. The hormone profiles of the perennial species showed delayed spikes in all four hormone groups indicating that there is a mismatch in the hormone requirements of the different embryos. Improving synchronization of early seed hormone profiles of cultivated and perennial chickpea should improve interspecific hybrid production.  相似文献   
100.
Human immunodeficiency virus type 1 (HIV-1) interactions with myeloid dendritic cells (DCs) can result in virus dissemination to CD4+ T cells via a trans infection pathway dependent on virion incorporation of the host cell derived glycosphingolipid (GSL), GM3. The mechanism of DC-mediated trans infection is extremely efficacious and can result in infection of multiple CD4+ T cells as these cells make exploratory contacts on the DC surface. While it has long been appreciated that activation of DCs with ligands that induce type I IFN signaling pathway dramatically enhances DC-mediated T cell trans infection, the mechanism by which this occurs has remained unclear until now. Here, we demonstrate that the type I IFN-inducible Siglec-1, CD169, is the DC receptor that captures HIV in a GM3-dependent manner. Selective downregulation of CD169 expression, neutralizing CD169 function, or depletion of GSLs from virions, abrogated DC-mediated HIV-1 capture and trans infection, while exogenous expression of CD169 in receptor-naïve cells rescued GSL-dependent capture and trans infection. HIV-1 particles co-localized with CD169 on DC surface immediately following capture and subsequently within non-lysosomal compartments that redistributed to the DC – T cell infectious synapses upon initiation of T cell contact. Together, these findings describe a novel mechanism of pathogen parasitization of host encoded cellular recognition machinery (GM3 – CD169 interaction) for DC-dependent HIV dissemination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号