首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   24篇
  2021年   7篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   11篇
  2014年   10篇
  2013年   11篇
  2012年   5篇
  2011年   10篇
  2010年   7篇
  2009年   13篇
  2008年   10篇
  2007年   11篇
  2006年   9篇
  2005年   7篇
  2004年   11篇
  2003年   3篇
  2002年   5篇
  2001年   6篇
  2000年   15篇
  1999年   12篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   7篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   6篇
  1978年   2篇
  1976年   3篇
  1975年   4篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1955年   1篇
排序方式: 共有267条查询结果,搜索用时 15 毫秒
61.
62.
63.
64.
65.
Human apolipoprotein C-I (apoC-I) is an exchangeable apolipoprotein that binds to lipoprotein particles in vivo. In this study, we employed a LC-MS/MS assay to demonstrate that residues 38-51 of apoC-I are significantly protected from proteolysis in the presence of 1,2-dimyristoyl-3-sn-glycero-phosphocholine (DMPC). This suggests that the key lipid-binding determinants of apoC-I are located in the C-terminal region, which includes F42 and F46. To test this, we generated site-directed mutants substituting F42 and F46 for glycine or alanine. In contrast to wild-type apoC-I (WT), which binds DMPC vesicles with an apparent Kd [Kd(app)] of 0.89 microM, apoC-I(F42A) and apoC-I(F46A) possess 2-fold weaker affinities for DMPC with Kd(app) of 1.52 microM and 1.58 microM, respectively. However, apoC-I(F46G), apoC-I(F42A/F46A), apoC-I(F42G), and apoC-I(F42G/F46G) bind significantly weaker to DMPC with Kd(app) of 2.24 microM, 3.07 microM, 4.24 microM, and 10.1 microM, respectively. Sedimentation velocity studies subsequently show that the protein/DMPC complexes formed by these apoC-I mutants sediment at 6.5S, 6.7S, 6.5S, and 8.0S, respectively. This is compared with 5.0S for WT apoC-I, suggesting the shape of the particles was different. Transmission electron microscopy confirmed this assertion, demonstrating that WT forms discoidal complexes with a length-to-width ratio of 2.57, compared with 1.92, 2.01, 2.16, and 1.75 for apoC-I(F42G), apoC-I(F46G), apoC-I(F42A/F46A), and apoC-I(F42G/F46G), respectively. Our study demonstrates that the C-terminal amphipathic alpha-helix of human apoC-I contains the major lipid-binding determinants, including important aromatic residues F42 and F46, which we show play a critical role in stabilizing the structure of apoC-I, mediating phospholipid interactions, and promoting discoidal particle morphology.  相似文献   
66.
67.
68.
Most researchers confidently assume that transformation of recombinant plasmid libraries into microbial hosts followed by outgrowth of isolated colonies results in a "one cell-one mutant gene-one protein variant" paradigm. Indeed, this assumption is supported by the overwhelming majority of published studies employing bacterial expression hosts. In stark contrast, we recently reported on Saccharomyces cerevisiae libraries containing unexpectedly high frequencies of cells harboring heterogeneous mixtures of plasmids, so called Multiple Vector Transformants (MVT). Intriguingly, we observed that yeast MVT persist as a significant proportion of populations for multiple generations. MVT can lead to misidentification of isolated mutants loss of functionally enhanced clones, and unwitting propagation of false positives derived from contaminating control sequences. Such experimental complications can have devastating outcomes in the context of protein engineering by combinatorial library screening. Herein, we demonstrate that the phenomenon of MVT is not restricted to vectors bearing the CEN/ARSH origin of replication, but may be an even greater concern when using high copy 2 μm plasmids. To mitigate the risks associated with MVT, we have developed an optimized sequencing procedure that facilitates rapid and reliable identification of MVT among clones of interest. In our experience, MVT and their associated risks can be virtually eliminated by employing extended liquid outgrowths of transformed populations and archiving sequence-verified, monoclonal, mutant genes from cell-templated PCR amplicons.  相似文献   
69.
Fu S  Scanlon MJ 《Genetics》2004,167(3):1381-1394
The paralogous maize proteins EMPTY PERICARP2 (EMP2) and HEAT SHOCK FACTOR BINDING PROTEIN2 (HSBP2) each contain a single recognizable motif: the coiled-coil domain. EMP2 and HSBP2 accumulate differentially during maize development and heat stress. Previous analyses revealed that EMP2 is required for regulation of heat shock protein (hsp) gene expression and also for embryo morphogenesis. Developmentally abnormal emp2 mutant embryos are aborted during early embryogenesis. To analyze EMP2 function during postembryonic stages, plants mosaic for sectors of emp2 mutant tissue were constructed. Clonal sectors of emp2 mutant tissue revealed multiple defects during maize vegetative shoot development, but these sector phenotypes are not correlated with aberrant hsp gene regulation. Furthermore, equivalent phenotypes are observed in emp2 sectored plants grown under heat stress and nonstress conditions. Thus, the function of EMP2 during regulation of the heat stress response can be separated from its role in plant development. The discovery of emp2 mutant phenotypes in postembryonic shoots reveals that the duplicate genes emp2 and hsbp2 encode nonredundant functions throughout maize development. Distinct developmental phenotypes correlated with the developmental timing, position, and tissue layer of emp2 mutant sectors, suggesting that EMP2 has evolved diverse developmental functions in the maize shoot.  相似文献   
70.
Sixty-three mutations affecting development of the maize kernel were isolated from active Robertson's Mutator (Mu) stocks. At least 14 previously undescribed maize gene loci were defined by mutations in this collection. Genetic mapping located 53 of these defective kernel (dek) mutations to particular chromosome arms, and more precise map determinations were made for 21 of the mutations. Genetic analyses identified 20 instances of allelism between one of the novel mutations and a previously described dek mutation, or between new dek mutations identified in this study; phenotypic variability was observed in three of the allelic series. Viability testing of homozygous mutant kernels identified numerous dek mutations with various pleiotropic effects on seedling and plant development. The mutations described here presumably arose by insertion of a Mu transposon within a dek gene; thus, many of the affected loci are expected to be accessible to molecular cloning via transposon-tagging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号