首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   26篇
  621篇
  2023年   1篇
  2022年   4篇
  2021年   11篇
  2020年   9篇
  2019年   11篇
  2018年   25篇
  2017年   17篇
  2016年   21篇
  2015年   15篇
  2014年   38篇
  2013年   36篇
  2012年   58篇
  2011年   43篇
  2010年   38篇
  2009年   30篇
  2008年   54篇
  2007年   37篇
  2006年   45篇
  2005年   37篇
  2004年   27篇
  2003年   19篇
  2002年   21篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1991年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1972年   1篇
  1969年   1篇
排序方式: 共有621条查询结果,搜索用时 15 毫秒
31.
Mutations in mitochondrial DNA (mtDNA) might contribute to expression of the tumor phenotypes, such as metastatic potential, as well as to aging phenotypes and to clinical phenotypes of mitochondrial diseases by induction of mitochondrial respiration defects and the resultant overproduction of reactive oxygen species (ROS). To test whether mtDNA mutations mediate metastatic pathways in highly metastatic human tumor cells, we used human breast carcinoma MDA-MB-231 cells, which simultaneously expressed a highly metastatic potential, mitochondrial respiration defects, and ROS overproduction. Since mitochondrial respiratory function is controlled by both mtDNA and nuclear DNA, it is possible that nuclear DNA mutations contribute to the mitochondrial respiration defects and the highly metastatic potential found in MDA-MB-231 cells. To examine this possibility, we carried out mtDNA replacement of MDA-MB-231 cells by normal human mtDNA. For the complete mtDNA replacement, first we isolated mtDNA-less (ρ(0)) MDA-MB-231 cells, and then introduced normal human mtDNA into the ρ(0) MDA-MB-231 cells, and isolated trans-mitochondrial cells (cybrids) carrying nuclear DNA from MDA-MB-231 cells and mtDNA from a normal subject. The normal mtDNA transfer simultaneously induced restoration of mitochondrial respiratory function and suppression of the highly metastatic potential expressed in MDA-MB-231 cells, but did not suppress ROS overproduction. These observations suggest that mitochondrial respiration defects observed in MDA-MB-231 cells are caused by mutations in mtDNA but not in nuclear DNA, and are responsible for expression of the high metastatic potential without using ROS-mediated pathways. Thus, human tumor cells possess an mtDNA-mediated metastatic pathway that is required for expression of the highly metastatic potential in the absence of ROS production.  相似文献   
32.
With the aim to address an undesired cardiac issue observed with our related compound in the recently disclosed novel series of renin inhibitors, further chemical modifications of this series were performed. Extensive structure–activity relationships studies as well as in vivo cardiac studies using the electrophysiology rat model led to the discovery of clinical candidate trans-adamantan-1-ol analogue 56 (DS-8108b) as a potent renin inhibitor with reduced potential cardiac risk. Oral administration of single doses of 3 and 10 mg/kg of 56 in cynomolgus monkeys pre-treated with furosemide led to significant reduction of mean arterial blood pressure for more than 12 h.  相似文献   
33.
We characterized three-dimensional human hepatoma cell lines, functional liver cell (FLC) cell lines, to establish a highly differentiated hepatoma cell line. We investigated the effect of extracellular matrix and cell morphology on liver-specific gene expression in FLC cells. The hepatocyte nuclear factor-4α (HNF-4α) and other liver-specific gene expressions were enhanced in spherical FLC-4 cells on EHS-gel, but other human hepatoma cells such as HepG2 did not show the enhancement. Importantly, the liver-specific gene expression levels in spherical FLC-4 cells cultured on EHS-gel were comparable to those of human liver and were much higher than those of other human hepatoma cell lines. The major matrix components and growth factors in EHS-gel did not affect cell shape and liver functions. To exclude any effect of the extracellular matrix, we made spherical FLC-4 cells by actin filament disruption. The actin-disrupted spherical cells also showed an enhanced liver-specific gene expression. We concluded that three-dimensional cell shape per se is one of the most important determinants of liver differentiation functions in FLC-4 cells. Cell morphology-dependent induction of liver-specific gene expression was mediated through microtubule organization. In conclusion, differentiation of FLC-4 human hepatoma cell line can be enhanced to a human liver-like level through the three-dimensional cell shape in a microtubule-dependent manner.  相似文献   
34.
We have demonstrated that chronic stimulation of the prostaglandin E2-cAMP-dependent protein kinase A (PKA) signal pathway plays a critical role in intimal cushion formation in perinatal ductus arteriosus (DA) through promoting synthesis of hyaluronan. We hypothesized that Epac, a newly identified effector of cAMP, may play a role in intimal cushion formation (ICF) in the DA distinct from that of PKA. In the present study, we found that the levels of Epac1 and Epac2 mRNAs were significantly up-regulated in the rat DA during the perinatal period. A specific EP4 agonist, ONO-AE1-329, increased Rap1 activity in the presence of a PKA inhibitor, PKI-(14-22)-amide, in DA smooth muscle cells. 8-pCPT-2'-O-Me-cAMP (O-Me-cAMP), a cAMP analog selective to Epac activator, promoted migration of DA smooth muscle cells (SMC) in a dose-dependent manner. Adenovirus-mediated Epac1 or Epac2 gene transfer further enhanced O-Me-cAMP-induced cell migration, although the effect of Epac1 overexpression on cell migration was stronger than that of Epac2. In addition, transfection of small interfering RNAs for Epac1, but not Epac2, significantly inhibited serum-mediated migration of DA SMCs. In the presence of O-Me-cAMP, actin stress fibers were well organized with enhanced focal adhesion, and cell shape was widely expanded. Adenovirus-mediated Epac1, but not Epac2 gene transfer, induced prominent ICF in the rat DA explants when compared with those with green fluorescent protein gene transfer. The thickness of intimal cushion became significantly greater (1.98-fold) in Epac1-overexpressed DA. O-Me-cAMP did not change hyaluronan production, although it decreased proliferation of DA SMCs. The present study demonstrated that Epac, especially Epac1, plays an important role in promoting SMC migration and thereby ICF in the rat DA.  相似文献   
35.
Conditional knockout (cKO) based on site-specific recombination (SSR) technology is a powerful approach for estimating gene functions in a spatially and temporally specific manner in many model animals. In Caenorhabditis elegans (C. elegans), spatial- and temporal-specific gene functions have been largely determined by mosaic analyses, rescue experiments and feeding RNAi methods. To develop a systematic and stable cKO system in C. elegans, we generated Cre recombinase expression vectors that are driven by various tissue-specific or heat-shock promoters. Validation using Cre-mediated fluorescence protein inactivation or activation systems demonstrated successful Cre-dependent loxP excision. We established a collection of multi-copy Cre transgenic strains for each evaluated vector. To evaluate our Cre/loxP-based cKO system, we generated sid-1 deletion mutants harboring floxed sid-1 single-copy integration (SCI) using ultraviolet trimethylpsoralen (UV/TMP) methods. sid-1 mutants that were rescued by the floxed sid-1 SCI were then crossed with the Pdpy-7::Cre strain for cKO in the hypodermis. The sid-1 cKO animals were resistant to bli-3 RNAi, which causes the Bli-phenotyple in the hypodermis, but they were sensitive to unc-22 RNAi, which leads to twitching of the body wall muscle. Our system, which is based on the combination of a transgenic Cre collection, pre-existing deletion mutants, and UV/TMP SCI methods, provided a systematic approach for cKO in C. elegans.  相似文献   
36.
3,4-Dihydroxyphenylacetic acid (DOPAC) is one of the major colonic microflora-produced catabolites of quercetin glycosides, such as quercetin 4′-glucoside derived from onion. Here, we investigated whether DOPAC modulates the aldehyde dehydrogenase (ALDH) activity and protects the cells from the acetaldehyde-induced cytotoxicity in vitro. DOPAC was shown to enhance not only the total ALDH activity, but also the gene expression of ALDH1A1, ALDH2 and ALDH3A1 in a concentration-dependent manner. DOPAC simultaneously stimulated the nuclear translocation of NFE2-related factor 2 and aryl hydrocarbon receptor. The pretreatment of DOPAC completely protected the cells from the acetaldehyde-induced cytotoxicity. The present study suggested that DOPAC acts as a potential ALDH inducer to prevent the alcohol-induced abnormal reaction.  相似文献   
37.
38.
Evaluating individual circadian rhythm traits is crucial for understanding the human biological clock system. The present study reports characterization of physiological and molecular parameters in 13 healthy male subjects under a constant routine condition, where interfering factors were kept to minimum. We measured hormonal secretion levels and examined temporal expression profiles of circadian clock genes in peripheral leukocytes and beard hair follicle cells. All 13 subjects had prominent daily rhythms in melatonin and cortisol secretion. Significant circadian rhythmicity was found for PER1 in 9 subjects, PER2 in 3 subjects, PER3 in all 13 subjects, and BMAL1 in 8 subjects in leukocytes. Additionally, significant circadian rhythmicity was found for PER1 in 5 of 8 subjects tested, PER2 in 2 subjects, PER3 in 6 subjects, and BMAL1 in 3 subjects in beard hair follicle cells. The phase of PER1 and PER3 rhythms in leukocytes correlated significantly with that of physiological rhythms. Our results demonstrate that leukocytes and beard hair follicle cells possess an endogenous circadian clock and suggest that PER1 and PER3 expression would be appropriate biomarkers and hair follicle cells could be a useful tissue source for the evaluation of biological clock traits in individuals.  相似文献   
39.
A novel heterotrophic, thermophilic bacterium, designated strain AC55T, was isolated from a deep-sea hydrothermal vent chimney at the Hatoma Knoll in the Okinawa Trough, Japan. Cells of strain AC55T were non-motile, long rods (2.0- to 6.8-μm long and 0.3- to 0.6-μm wide). The strain was an obligatory anaerobic heterotroph capable of fermentative growth on complex proteinaceous substances. Elemental sulfur was reduced to hydrogen sulfide but did not stimulate growth. Growth was observed between 37 and 60°C (optimum 55°C), pH 5.5 and 8.5 (optimum pH 6.6), and in the presence of 1.5–4.5% (w/v) NaCl (optimum 2.5%, w/v). Menaquinone-7 and -8 were the major respiratory quinones. The G + C content of the genomic DNA from strain AC55T was 51.6 mol%. The 16S rRNA gene sequence analysis revealed that strain AC55T was the first cultivated representative of Acidobacteria subdivision 10. Based on the physiological and phylogenetic features of the novel isolate, the genus name Thermotomaculum gen. nov. is proposed, with Thermotomaculum hydrothermale sp. nov. as the type species. The type strain is AC55T (=JCM 17643T = DSM 24660T = NBRC 107904T).  相似文献   
40.
A comparison has been made of dicentric yields in G0 lymphocytes between man and crab-eating monkey, Macaca fascicularis, after acute and chronic γ-irradiations. With acute irradiation (49.6 rad/min) there was no significant difference between them, but for the chronic irradiation (17.1 rad/h) a significant difference was observed between the species. When the dose-response relations were fitted to the linear-quadratic model (Y = αD + βD2), the species-difference observed for chronic irradiation was almost entirely due to change in the value of β. In addition, after chronic irradiation the β-value for monkey was almost negligible, but that for man was significant. Post-irradiation incubation experiment showed that cells with dicentrics were partly eliminated during the course of chronic irradiation, because there were appreciable reductions of dicentric yields (ca. 25% for both man and monkey at 400 rad) together with mitotic indices (ca. 30% and 60% for man and monkey, respectively, at 400 rad). Accordingly, it would be reasonable to postulate that G0 repair for dicentrics other than selection mechanism must play a major role in the effects of low dose rate. It can be further suggested that G0-repair capacity for chromosal damages leading to dicentrics may be different among different primate species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号