首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   10篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   85篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1994年   2篇
  1992年   5篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
121.
Exogenous adenosine 5′-triphosphate 3′-diphosphate (pppApp) had interesting effects on the cell cycle of B. subtilis IFO 3027. The growth rate was reduced by the addition of 1 mm pppApp, and the vegetative cell form was significantly changed. Moreover, the sporulation frequency was increased by 100 times or more as compared with the culture without pppApp. The sporulation process seemed to be stimulated around t0. pppGpp and ppGpp also showed the same effects as pppApp. Among these effects, depression in growth rate was restored by Mg2+ and Ca2+, and stimulation of sporulation was inhibited by Mg2+, Ca2+ and certain carbon sources, such as glucose and glycerol. On the other hand, casamino acids or monovalent cations showed no influence on the pppApp effects. pppApp was not incorporated into cells in experiments with radioactive pppApp.  相似文献   
122.
The molecular weight determined by the sedimentation equilibrium and SDS Polyacrylamide gel electrophoresis was 29,000 and 28,000, respectively. Isoelectric point of the enzyme was determined as pH 7.7. This enzyme contained large amounts of alanine, aspartic acid, glutamic acid and serine, and no cysteine residue was found. The enzyme was inhibited by SDS, KMnO4, EDTA and tetracycline. GTP and GDP were the most active as pyrophosphate acceptor to the enzyme. The apparent Km for ATP was 2.2×10?4 m and that for GTP was 2.1×10?4m in the reaction of ATP+GTP→AMP+pppGpp. On the other hand, in the reaction of 2ATP→AMP+pppApp, the apparent Km for donor and acceptor ATP was 1.7×10?3m. Effects of pH and metal ions on the enzymatic synthesis of pppGpp were also studied.  相似文献   
123.
A proteinaceous protease inhibitor which might have an intracellular role in modulating protease activity during sporulation was isolated from B. subtilis IFO 3027 by trichloroacetic acid and ethanol precipitations, and column chromatographies on SP-Sephadex, DEAE-Sephadex, DE AE-Toyopearl and Sephadex G-75.

The molecular weight of the inhibitor was estimated by gel filtration and SDS polyacrylamide gel electrophoresis to be about 16,000. The isoelectric point was determined as pH 4.8. The inhibitor is an acid and thermostable protein. The-amino acid sequence in the amino terminal region was determined to be (Met)-Glu-Asn-Gln-Glu-Val-Val-Leu-X-X-Asp-Ala-Ile-Gln-Glu- ··· (X, unidentified).

In addition to cytoplasmic serine proteases of the inhibitor-producing strain, the inhibitor inhibits various microbial serine proteases.  相似文献   
124.
Conditions for extracellular production of vitamin B6 compounds (B6), especially pyridoxal 5'-phosphate (PLP) by Schizosaccharomyces pombe leu1 strain were examined. The productivity was dependent on concentration of L-leucine in the culture medium: 30 mg/l gave the highest concentrations of total B6 and PLP. The viable cells harvested at different growth phases showed different productivity: middle and late exponential phase cells showed the highest productivity of total B6 and PLP, respectively. D-Glucose (1%, w/v) among other sugars gave the best productivity. Supplementation of air and ammonium sulfate significantly increased extracellular production of PLP. Superoxide anion producers, menadione and plumbagin, and H2O2 increased the productivity of PLP. Cycloheximide inhibited the increase of PLP by the oxidative stress and in contrast, increased pyridoxine.  相似文献   
125.
S–PI inhibited various acid proteases including pepsin, Rhodotorula glutinis acid protease and Cladosporium acid protease, but the rate of inhibition was different for each acid protease.

S–PI made an equimolar complex with these acid proteases. A part of the enzyme-S–PI complex dissociated in the reaction mixture and showed proteolytic activity. The specific activity of the enzyme-S–PI complex depended on the concentration of the complex in the reaction mixture. Compared with native (S–PI free) enzyme, each of the enzyme-S–PI complex showed 50% activity at the following concentrations, pepsin; 7.5×10?10M, Rh. glutinis acid protease; 1.8×10?7M, Cladosporium acid protease; 3.0×10?6M.

These acid proteases were stabilized from heat or acid denaturation by making the enzyme-S–PI complex. S–PI protected the modification of these acid proteases by diazoacetyl-DL-norleucine methyl ester.

Binding between these acid proteases and S–PI dissociated at around neutral pH. S–PI was separated from enzyme-S–PI complex by dialysis at pH 7.5. In this case, pepsin underwent denaturation, while denaturations of Rh. glutinis acid protease and Cladosporium acid protease were slight. Rh. glutinis acid protease and Cladosporium acid protease were recovered from enzyme-S–PI complex by DEAE cellulose column chromatography as a native form.  相似文献   
126.
Studies have been done on the inhibition and inactivation of the β-glucosidase and β-fucosidase enzyme from Thai Rosewood (Dalbergia cochinchinesis Pierre). The enzyme was inhibited by Tris with similar Ki of 11.7 mm and 14.3 mm for the hydrolysis of p/nitrophenyl β-d-glucoside (PNPG) and p/nitrophenyl β-d-fucoside (PNPF), respectively. Conduritol B epoxide inhibited both β-glucosidase and β/fucosidase activities to similar extents, with a pseudo-first-order rate constant (Kobs) of inactivation of 5.56 × 10?3 s ?1, and binding stoichiometry of 0.9 mol per subunit. Partially inactivated enzyme showed similar kinetics with PNPG and PNPF as substrates. Moreover, Tris at 300 mm protected both β-glucosidase and β-fucosidase activities from inactivation by 6mm CBE. The data support the idea that the Dalbergia cochinchinensis Pierre enzyme has a common active site for the hydrolysis of PNPG and PNPF.  相似文献   
127.
Cladosporium sp. No. 45–2, an acid protease-producing microorganism, was cultured in medium containing a microbial acid protease inhibitor (S–PI). By the addition of S–PI, the amount of acid protease in the culture broth showed an increase of 50~80% over those of normal culture (S–PI-free). Acid protease was purified from the S–PI-added culture filtrate, and its enzymatic and physicochemical properties were compared with those of acid protease obtained from normal culture. It was determined that the acid protease obtained from S–PI-added culture was the same as that of normal culture, but that the productivity was increased by the addition of S–PI.

The increase in acid protease productivity is assumed to be due to a change in metabolism by the addition of S–PI.  相似文献   
128.
The β-1,3-glucanase (1,3-β-d-glucan glucanohydrolase, EC 3.2.1.6) gene from Flavobacterium dormitator var. glucanolyticae was cloned into Escherichia coli C600 with a vector plasmid, pBR322. The E. coli cells carrying a recombinant plasmid, pKUβG1 (8.2 kb), showed a high β-1,3-glucanase activity and a lytic activity on viable yeast cells. These activities were found in the peripiasmic space of E. coli clone cells. Southern hybridization analysis showed that the cloned gene was derived from F. dormitator chromosomal DNA. The gene products were purified from the periplasmic fraction of E. coli by ammonium sulfate fractionation and ion-exchange chromatography. The purified enzymes were demonstrated to be identical with a lytic endo-β-1,3-glucanase II and a nonlytic endo-β-1,3-glucanase I from F. dormitator from their enzymological and immunological properties. In the E. coli cells, endo-β-1,3-glucanase I was also formed by a proteolytic digestion of endo-β-1,3-glucanase II during the cultivation as in F. dormitator. Thus, the only endo-β-1,3-glucanase II was coded for in the cloned gene.  相似文献   
129.
Microbial alkaline protease inhibitor, S-SI, was immobilized by covalent binding with Sepharose (agarose spheres) which was previously activated by cyanogen bromide. S-SI-Sepharose, thus obtained, contained 7.2 mg of S-SI in 1 ml of settled volume, and its subtilisin-combining capacity was 16.6 mg per ml. Stability of S-SI did not be lowered by immobilization. Affinity of immobilized S-SI for various proteases was examined, and it was revealed that α-chymotrypsin, as well as microbial alkaline proteases, had affinity for immobilized S-SI. To determine the most effective condition for dissociation of coupled subtilisin BPN’, effects of pH, ionic strength, protein denaturants, and sodium dodecyl sulfate (SDS) were examined. Dissociated subtilisin BPN’ with high specific activity was obtained when SDS was used as dissociating agent and was removed with Dowex 2-X10 column from dissociated enzyme solution. S-SI-Sepharose was applied to purifications of B. subtilis S04 alkaline protease and α-chymotrypsin, and purified enzymes with high specific activity were obtained.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号