首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2536篇
  免费   137篇
  国内免费   1篇
  2022年   12篇
  2021年   33篇
  2020年   12篇
  2019年   24篇
  2018年   45篇
  2017年   31篇
  2016年   58篇
  2015年   80篇
  2014年   99篇
  2013年   132篇
  2012年   158篇
  2011年   167篇
  2010年   106篇
  2009年   81篇
  2008年   162篇
  2007年   139篇
  2006年   122篇
  2005年   115篇
  2004年   136篇
  2003年   118篇
  2002年   112篇
  2001年   55篇
  2000年   66篇
  1999年   52篇
  1998年   25篇
  1997年   24篇
  1996年   20篇
  1995年   28篇
  1994年   19篇
  1993年   15篇
  1992年   45篇
  1991年   36篇
  1990年   42篇
  1989年   30篇
  1988年   24篇
  1987年   37篇
  1986年   31篇
  1985年   21篇
  1984年   20篇
  1983年   14篇
  1982年   14篇
  1981年   12篇
  1980年   12篇
  1979年   10篇
  1978年   7篇
  1977年   12篇
  1976年   12篇
  1974年   9篇
  1973年   6篇
  1969年   7篇
排序方式: 共有2674条查询结果,搜索用时 15 毫秒
991.
Our previous study revealed that salicylic acid (SA) accumulates in salt-stressed rice (Oryza sativa L. cv. Nipponbare) seedlings, and we hypothesized that the accumulation of SA might potentiate oxidative injury in rice seedlings since the inhibition of SA synthesis alleviated the growth inhibition under high salinity. To further clarify the action of SA under salt stress, we investigated the changes in the SA content, the activities of the antioxidative enzymes, and the effects of exogenous SA on barnyardgrass (Echinochloa crus-galli Beauv. var. formosensis Ohwi), a gramineous weed which shows lower SA content and is more salt tolerant than rice. In E. crus-galli seedlings exposed to high salinity, neither free nor conjugated SA content showed any increase, while the fresh weight of the shoot and chlorophyll fluorescence (ΦPSII) slightly decreased. When E. crus-galli seedlings were treated with salt after foliar application of SA, the absorbed SA resulted in the enhancement of the salt-induced growth inhibition and a striking reduction of the ΦPSII value. Catalase (CAT) and superoxide dismutase (SOD) activities of E. crus-galli seedlings were induced by the salt treatment. However, SA pre-treatment suppressed such an induction of CAT activity and further promoted SOD activity, both of which led to the elevation of the leaf hydrogen peroxide (H2O2) level. The present results suggested that enlargement of the cellular SA pool facilitates the generation of H2O2 through the suppression of CAT activity and through a remarkable promotion of SOD activity, and thereby enhances the oxidative injury caused by salt stress.  相似文献   
992.
Exosomes are small vesicles secreted from cells that transport their embedded molecules through bidirectional exocytosis‐ and endocytosis‐like pathways. Expression patterns of exosomal molecules such as proteins and RNAs can be indicative of cell type since their signature is thought to be unique among cells. Using human primary (AZ‐521) and metastatic (AZ‐P7a) duodenal cancer cell lines, we conducted a comparative exosomal proteome analysis to identify proteins with metastatic marker potential. As determined by LC‐MS/MS and Western blot analyses, polyadenylate‐binding protein 1 (PABP1) was found to be predominantly abundant in AZ‐P7a exosomes. The amount of exosomal PABP1 in AZ‐P7a cells increased by treating the cells with inhibitors for the classical ER/Golgi secretory pathway (brefeldin A and monensin) and the ubiquitin‐proteasome pathway (MG‐132 and PYR‐41). Treatment of AZ‐P7a cells with the neutral sphingomyelinase inhibitor GW4869, which suppresses exosome release, not only reduced the amount of exosomal PABP1 but also produced PABP1‐immunoreactive products cleaved via a proteolysis‐like process. Taken together, these results suggest that AZ‐P7a cells do not tolerate intracellular PABP1 accumulation and are thus exported into the extracellular milieu by the exosome‐mediated pathway. In addition, PABP1 has a potential use as a biomarker for metastatic duodenal cancer.  相似文献   
993.
Summary Alterations in peroxisomes and catalase activity and their responsiveness to clofibrate in adult rat hepatocytes in primary culture were investigated. The numbers of peroxisomes with and without crystalloid nucleoids per unit cytoplasmic area were preserved in cultured hepatocytes for 2 d after seeding at a level comparable to that of freshly isolated hepatocytes. At Day 3 in culture, the number of anucleoid peroxisomes was reduced in untreated hepatocytes, accompanied by more significant reduction in the number of nucleoid-containing peroxisomes, which decreased until Day 5. Peroxisome diameters were reduced in untreated hepatocytes at Day 2 and this decrease in the diameter was continued until Day 7. Catalase activity in untreated hepatocytes decreased markedly with culture age. The number of anucleoid peroxisomes was significantly greater in hepatocytes treated with 2mM clofibrate in culture than in freshly isolated hepatocytes for 2 d or in untreated hepatocytes of the same culture age through 7 d. The number of nucleoid-containing peroxisomes in the treated cells began to decrease in 3 d, but was greater than that of untreated cells at Days 3 and 5. Peroxisomes with well-developed nucleoids were observed frequently in the treated cells even at Day 7. Peroxisome diameters were greater in the treated cells than in untreated cells at Days 3, 5, and 7. Catalase activity was always higher in the treated cells than in untreated cells. These results suggest that clofibrate is effective in inducing peroxisome proliferation as well as in maintaining the organelles in cultured hepatocytes. This work was supported in part by Grants-in-Aid for Scientific Research from Ministry of Education, Science and Culture, Japan, 448143, 50168, 501069, and 577196, and by a Grant-in-Aid from Hokkaido Geriatrics Research Institute.  相似文献   
994.
PTEN-induced kinase 1 (PINK1), which is required for mitochondrial homeostasis, is a gene product responsible for early-onset Parkinson's disease (PD). Another early onset PD gene product, Parkin, has been suggested to function downstream of the PINK1 signalling pathway based on genetic studies in Drosophila. PINK1 is a serine/threonine kinase with a predicted mitochondrial target sequence and a probable transmembrane domain at the N-terminus, while Parkin is a RING-finger protein with ubiquitin-ligase (E3) activity. However, how PINK1 and Parkin regulate mitochondrial activity is largely unknown. To explore the molecular mechanism underlying the interaction between PINK1 and Parkin, we biochemically purified PINK1-binding proteins from human cultured cells and screened the genes encoding these binding proteins using Drosophila PINK1 (dPINK1) models to isolate a molecule(s) involved in the PINK1 pathology. Here we report that a PINK1-binding mitochondrial protein, PGAM5, modulates the PINK1 pathway. Loss of Drosophila PGAM5 (dPGAM5) can suppress the muscle degeneration, motor defects, and shorter lifespan that result from dPINK1 inactivation and that can be attributed to mitochondrial degeneration. However, dPGAM5 inactivation fails to modulate the phenotypes of parkin mutant flies. Conversely, ectopic expression of dPGAM5 exacerbated the dPINK1 and Drosophila parkin (dParkin) phenotypes. These results suggest that PGAM5 negatively regulates the PINK1 pathway related to maintenance of the mitochondria and, furthermore, that PGAM5 acts between PINK1 and Parkin, or functions independently of Parkin downstream of PINK1.  相似文献   
995.
The involvement of salicylic acid (SA) in the regulation of stress-induced flowering in the short-day plant pharbitis (also called Japanese morning glory) Ipomoea nil (formerly Pharbitis nil) was studied. Pharbitis cv. Violet was induced to flower when grown in 1/100-strength mineral nutrient solution under non-inductive long-day conditions. All fully expanded true leaves were removed from seedlings, leaving only the cotyledons, and flowering was induced under poor-nutrition stress conditions. This indicates that cotyledons can play a role in the regulation of poor-nutrition stress-induced flowering. The expression of the pharbitis homolog of PHENYLALANINE AMMONIA-LYASE, the enzyme activity of phenylalanine ammonia-lyase (PAL; E.C. 4.3.1.5) and the content of SA in the cotyledons were all up-regulated by the stress treatment. The Violet was also induced to flower by low-temperature stress, DNA demethylation and short-day treatment. Low-temperature stress enhanced PAL activity, whereas non-stress factors such as DNA demethylation and short-day treatment decreased the activity. The PAL enzyme activity was also examined in another cultivar, Tendan, obtaining similar results to Violet. The exogenously applied SA did not induce flowering under non-stress conditions but did promote flowering under weak stress conditions in both cultivars. These results suggest that stress-induced flowering in pharbitis is induced, at least partly, by SA, and the synthesis of SA is promoted by PAL.  相似文献   
996.
Microbial communities from a subseafloor sediment core from the southwestern Sea of Okhotsk were evaluated by performing both cultivation-dependent and cultivation-independent (molecular) analyses. The core, which extended 58.1 m below the seafloor, was composed of pelagic clays with several volcanic ash layers containing fine pumice grains. Direct cell counting and quantitative PCR analysis of archaeal and bacterial 16S rRNA gene fragments indicated that the bacterial populations in the ash layers were approximately 2 to 10 times larger than those in the clays. Partial sequences of 1,210 rRNA gene clones revealed that there were qualitative differences in the microbial communities from the two different types of layers. Two phylogenetically distinct archaeal assemblages in the Crenarchaeota, the miscellaneous crenarchaeotic group and the deep-sea archaeal group, were the most predominant archaeal 16S rRNA gene components in the ash layers and the pelagic clays, respectively. Clones of 16S rRNA gene sequences from members of the gamma subclass of the class Proteobacteria dominated the ash layers, whereas sequences from members of the candidate division OP9 and the green nonsulfur bacteria dominated the pelagic clay environments. Molecular (16S rRNA gene sequence) analysis of 181 isolated colonies revealed that there was regional proliferation of viable heterotrophic mesophiles in the volcanic ash layers, along with some gram-positive bacteria and actinobacteria. The porous ash layers, which ranged in age from tens of thousands of years to hundreds of thousands of years, thus appear to be discrete microbial habitats within the coastal subseafloor clay sediment, which are capable of harboring microbial communities that are very distinct from the communities in the more abundant pelagic clays.  相似文献   
997.
The fibrillar collagen I gel induced the formation of numerous dendritic cell-like protrusions (cell spikes) from the cell body, whereas monomeric collagen I induced typical cell spreading with filopodia and lamellipodia in skin fibroblasts. Peripheral, not central stress fibers appeared upon adhesion to fibrillar collagen gel, whereas both types of fibers were evident upon adhesion to monomeric collagen. Microtubules and vimentin filaments were elongated inside stress fibers along the terminal tip of cell spikes. Spike formation was totally inhibited by nocodazole and severely delayed by cytochalasin D. This suggests that cell spike formation is dependent on microtubules rather than on F-actin. We then investigated the intracellular signaling responsible for cytoskeleton organization to identify the key factor that induces cell spike morphology. During cell spike formation, FAK and CAS were activated. More CAS was activated in cells on fibrillar collagen gel than on the monomeric form, whereas FAK was activated to the same level on either. At 90 min of culture, Rac1 was activated in cells on monomeric collagen I, whereas Cdc42, Rac1 and RhoA were activated in cells on fibrillar collagen gel. These results suggest that microtubule organization via CAS and small GTPases is important for the cell spike formation that is involved in collagen gel contraction and in wound retraction in skin.  相似文献   
998.
Carbon monoxide (CO) is known to protect myocardial and vascular cells against injuries due to ischemia-reperfusion or inflammation. We showed that a Ca(2+)-dependent protease calpain promotes necrotic cell death of cardiomyocyte-derived H9c2 cells due to hypoxia through alpha-fodrin proteolysis. Here, we show that ischemia induces necrotic cell death, which is inhibited by either CO, extracellular Ca(2+) deprivation or L-type Ca(2+) channel blockers. A whole cell patch-clamp experiment supports that CO inhibits L-type Ca(2+) channel mediated influx of Ca(2+) and the ischemic death of H9c2 cells.  相似文献   
999.
The growth and morphological development of larval and juvenileEpinephelus bruneus were examined in a hatchery-reared series. Average body length (BL) of newly-hatched larvae was 1.99 mm, the larvae growing to an average of 3.96 mm by day 10, 6.97 mm by day 20, 12.8 mm by day 30, 22.1 mm by day 40 and 24.7 mm by day 45 after hatching. Newly-hatched larvae had many mucous cells in the entire body epidermis. By about 4 mm BL, the larvae had developed pigment patterns peculiar to epinepheline fishes, including melanophores on the dorsal part of the gut, on the tips of the second dorsal and pelvic fin spines, and in a cluster on the ventral surface of the tail. Spinelets on the second dorsal and pelvic fin spines, the preopercular angle spine and the supraocular spine, had started to develop by about 6 mm BL. The notochord tip was in the process of flexion in larvae of 6–8 mm BL, by which time major spines, pigments and jaw teeth had started to appear. Fin ray counts had attained the adult complement at 10 mm BL. After larvae reached 17 mm BL, elements of juvenile coloration in the form of more or less densely-pigmented patches started to appear on the body. Squamation started at 20 mm BL. Major head spines had disappeared or became relatively smaller and lost their serrations by 20–25 mm BL.  相似文献   
1000.
Abiotic stresses, such as high light and salinity, are major factors that limit crop productivity and sustainability worldwide. Chemical priming is a promising strategy for improving the abiotic stress tolerance of plants. Recently, we discovered that ethanol enhances high-salinity stress tolerance in Arabidopsis thaliana and rice by detoxifying reactive oxygen species (ROS). However, the effect of ethanol on other abiotic stress responses is unclear. Therefore, we investigated the effect of ethanol on the high-light stress response. Measurement of chlorophyll fluorescence showed that ethanol mitigates photoinhibition under high-light stress. Staining with 3,3′-diaminobenzidine (DAB) showed that the accumulation of hydrogen peroxide (H2O2) was inhibited by ethanol under high-light stress conditions in A. thaliana. We found that ethanol increased the gene expressions and enzymatic activities of antioxidative enzymes, including ASCORBATE PEROXIDASE1 (AtAPX1), Catalase (AtCAT1 and AtCAT2). Moreover, the expression of flavonoid biosynthetic genes and anthocyanin contents were upregulated by ethanol treatment during exposure to high-light stress. These results imply that ethanol alleviates oxidative damage from high-light stress in A. thaliana by suppressing ROS accumulation. Our findings support the hypothesis that ethanol improves tolerance to multiple stresses in field-grown crops.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号