首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   911篇
  免费   98篇
  2022年   7篇
  2021年   11篇
  2020年   10篇
  2019年   13篇
  2018年   12篇
  2016年   24篇
  2015年   24篇
  2014年   21篇
  2013年   43篇
  2012年   46篇
  2011年   36篇
  2010年   20篇
  2009年   21篇
  2008年   36篇
  2007年   30篇
  2006年   25篇
  2005年   22篇
  2004年   23篇
  2003年   36篇
  2002年   28篇
  2001年   27篇
  2000年   22篇
  1999年   13篇
  1998年   9篇
  1997年   11篇
  1996年   15篇
  1994年   9篇
  1993年   8篇
  1992年   17篇
  1991年   16篇
  1990年   18篇
  1989年   15篇
  1988年   30篇
  1987年   17篇
  1986年   21篇
  1985年   22篇
  1984年   15篇
  1983年   15篇
  1982年   13篇
  1981年   11篇
  1980年   12篇
  1979年   11篇
  1978年   13篇
  1977年   11篇
  1974年   9篇
  1973年   11篇
  1972年   7篇
  1971年   7篇
  1969年   6篇
  1967年   8篇
排序方式: 共有1009条查询结果,搜索用时 15 毫秒
61.
Dietary modification such as caloric restriction (CR) has been shown to decrease tumor initiation and progression. We sought to determine if nutrient restriction could be used as a novel therapeutic intervention to enhance cytotoxic therapies such as radiation (IR) and alter the molecular profile of triple-negative breast cancer (TNBC), which displays a poor prognosis. In two murine models of TNBC, significant tumor regression is noted with IR or diet modification, and a greater regression is observed combining diet modification with IR. Two methods of diet modification were compared, and it was found that a daily 30% reduction in total calories provided more significant tumor regression than alternate day feeding. At the molecular level, tumors treated with CR and IR showed less proliferation and more apoptosis. cDNA array analysis demonstrated the IGF-1R pathway plays a key role in achieving this physiologic response, and multiple members of the IGF-1R pathway including IGF-1R, IRS, PIK3ca and mTOR were found to be downregulated. The innovative use of CR as a novel therapeutic option has the potential to change the biology of tumors and enhance the opportunity for clinical benefit in the treatment of patients with TNBC.  相似文献   
62.
The rubber hand illusion (RHI) is a popular experimental paradigm. Participants view touch on an artificial rubber hand while the participants'' own hidden hand is touched. If the viewed and felt touches are given at the same time then this is sufficient to induce the compelling experience that the rubber hand is one''s own hand. The RHI can be used to investigate exactly how the brain constructs distinct body representations for one''s own body. Such representations are crucial for successful interactions with the external world. To obtain a subjective measure of the RHI, researchers typically ask participants to rate statements such as "I felt as if the rubber hand were my hand". Here we demonstrate how the crossmodal congruency task can be used to obtain an objective behavioral measure within this paradigm.The variant of the crossmodal congruency task we employ involves the presentation of tactile targets and visual distractors. Targets and distractors are spatially congruent (i.e. same finger) on some trials and incongruent (i.e. different finger) on others. The difference in performance between incongruent and congruent trials - the crossmodal congruency effect (CCE) - indexes multisensory interactions. Importantly, the CCE is modulated both by viewing a hand as well as the synchrony of viewed and felt touch which are both crucial factors for the RHI.The use of the crossmodal congruency task within the RHI paradigm has several advantages. It is a simple behavioral measure which can be repeated many times and which can be obtained during the illusion while participants view the artificial hand. Furthermore, this measure is not susceptible to observer and experimenter biases. The combination of the RHI paradigm with the crossmodal congruency task allows in particular for the investigation of multisensory processes which are critical for modulations of body representations as in the RHI.  相似文献   
63.
Conservation is an important organizational focus for zoos and aquariums. Organizational identity theory predicts a relationship between what is central to organizations, such as their mission statements, and their strategic activities. Based on this theory, we tested how organizational missions relate to their conservation strategies and practices. Tax forms and websites provided data from 173 zoos and 38 aquariums in the Association of Zoos and Aquariums in North America. We analyzed conservation mission strength, organizational characteristics, and project features with dependent variables representing the depth of organizational conservation commitments: amount of grants zoos funded, number of partner organizations, and number of projects per zoo. On tax forms, the average amount of total conservation grants donated to partner organizations per zoo was over $650,000, while the average number of partners reported on the tax forms was two. The content analysis of websites revealed an average of 14 conservation partners and 10 projects per zoo. Negative binomial regression models were significant. The financial analysis revealed that only the number of zoo personnel, as a surrogate for organization size, significantly predicted the amount of zoos’ conservation grants. Website analyses found increasing budgets, organizational involvement, and geographic reach of the projects predicted increasing numbers of conservation projects and partnerships. However, our findings did not support the hypothesized relationship—strength of organizational mission did not predict strategy and activities. Zoos could do more to strategically activate their organizational identities and conservation missions to achieve their conservation goals.  相似文献   
64.
Integrating physical knowledge and machine learning is a critical aspect of developing industrially focused digital twins for monitoring, optimisation, and design of microalgal and cyanobacterial photo-production processes. However, identifying the correct model structure to quantify the complex biological mechanism poses a severe challenge for the construction of kinetic models, while the lack of data due to the time-consuming experiments greatly impedes applications of most data-driven models. This study proposes the use of an innovative hybrid modelling approach that consists of a simple kinetic model to govern the overall process dynamic trajectory and a data-driven model to estimate mismatch between the kinetic equations and the real process. An advanced automatic model structure identification strategy is adopted to simultaneously identify the most physically probable kinetic model structure and minimum number of data-driven model parameters that can accurately represent multiple data sets over a broad spectrum of process operating conditions. Through this hybrid modelling and automatic structure identification framework, a highly accurate mathematical model was constructed to simulate and optimise an algal lutein production process. Performance of this hybrid model for long-term predictive modelling, optimisation, and online self-calibration is demonstrated and thoroughly discussed, indicating its significant potential for future industrial application.  相似文献   
65.

Background and Aims

In complex communities, organisms often form mutualisms with multiple different partners simultaneously. Non-additive effects may emerge among species linked by these positive interactions. Ants commonly participate in mutualisms with both honeydew-producing insects (HPI) and their extrafloral nectary (EFN)-bearing host plants. Consequently, HPI and EFN-bearing plants may experience non-additive benefits or costs when these groups co-occur. The outcomes of these interactions are likely to be influenced by variation in preferences among ants for honeydew vs. nectar. In this study, a test was made for non-additive effects on HPI and EFN-bearing plants resulting from sharing exotic ant guards. Preferences of the dominant exotic ant species for nectar vs. honeydew resources were also examined.

Methods

Ant access, HPI and nectar availability were manipulated on the EFN-bearing shrub, Morinda citrifolia, and ant and HPI abundances, herbivory and plant growth were assessed. Ant-tending behaviours toward HPI across an experimental gradient of nectar availability were also tracked in order to investigate mechanisms underlying ant responses.

Key Results

The dominant ant species, Anoplolepis gracilipes, differed from less invasive ants in response to multiple mutualists, with reductions in plot-wide abundances when nectar was reduced, but no response to HPI reduction. Conversely, at sites where A. gracilipes was absent or rare, abundances of less invasive ants increased when nectar was reduced, but declined when HPI were reduced. Non-additive benefits were found at sites dominated by A. gracilipes, but only for M. citrifolia plants. Responses of HPI at these sites supported predictions of the non-additive cost model. Interestingly, the opposite non-additive patterns emerged at sites dominated by other ants.

Conclusions

It was demonstrated that strong non-additive benefits and costs can both occur when a plant and herbivore share mutualist partners. These findings suggest that broadening the community context of mutualism studies can reveal important non-additive effects and increase understanding of the dynamics of species interactions.  相似文献   
66.
KJ Wynne  GW Swain  RB Fox  S Bullock  J Uilk 《Biofouling》2013,29(2-4):277-288

Two silicone coatings have been evaluated for barnacle adhesion. One coating is an unfilled hydrosilation cured polydimethylsiloxane (PDMS) network, while the other is a room temperature vulcanized (RTV), filled, ethoxysiloxane cured PDMS elastomer, RTV11?. The adhesion strength of one species of barnacle, Balanus eburneus, to the hydrosilation coatings is in the range of 0.37–0.60 kg cm‐2 while the corresponding range for RTV11 is 0.64–0.90 kg cm‐2. The easier release of B. eburneus from the hydrosilation cured network compared to RTV11 is discussed in relationship to differences in bulk and surface properties. Preliminary results suggest bulk modulus may be the most important parameter in determining barnacle adhesion strength. In light or mechanical property analysis, a re‐evaluation of surface properties and chemical stability is presented.  相似文献   
67.

Introduction

Renal disease affects over 500 million people worldwide and is set to increase as treatment options are predominately supportive. Evidence suggests that exogenous haematopoietic stem cells (HSCs) can be of benefit but due to the rarity and poor homing of these cells, benefits are either minor or transitory. Mechanisms governing HSC recruitment to injured renal microcirculation are poorly understood; therefore this study determined (i) the adhesion molecules responsible for HSC recruitment to the injured kidney, (ii) if cytokine HSC pre-treatment can enhance their homing and (iii) the molecular mechanisms accountable for any enhancement.

Methods

Adherent and free-flowing HSCs were determined in an intravital murine model of renal ischaemia-reperfusion injury. Some HSCs and animals were pre-treated prior to HSC infusion with function blocking antibodies, hyaluronidase or cytokines. Changes in surface expression and clustering of HSC adhesion molecules were determined using flow cytometry and confocal microscopy. HSC adhesion to endothelial counter-ligands (VCAM-1, hyaluronan) was determined using static adhesion assays in vitro.

Results

CD49d, CD44, VCAM-1 and hyaluronan governed HSC adhesion to the IR-injured kidney. Both KC and SDF-1α pre-treatment strategies significantly increased HSC adhesion within injured kidney, whilst SDF-1α also increased numbers continuing to circulate. SDF-1α and KC did not increase CD49d or CD44 expression but increased HSC adhesion to VCAM-1 and hyaluronan respectively. SDF-1α increased CD49d surface clustering, as well as HSC deformability.

Conclusion

Increasing HSC adhesive capacity for its endothelial counter-ligands, potentially through surface clustering, may explain their enhanced renal retention in vivo. Furthermore, increasing HSC deformability through SDF-1α treatment could explain the prolonged systemic circulation; the HSC can therefore continue to survey the damaged tissue instead of becoming entrapped within non-injured sites. Therefore manipulating these mechanisms of HSC recruitment outlined may improve the clinical outcome of cellular therapies for kidney disease.  相似文献   
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号