首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   12篇
  国内免费   1篇
  2023年   5篇
  2022年   5篇
  2021年   7篇
  2020年   4篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   7篇
  2015年   8篇
  2014年   6篇
  2013年   22篇
  2012年   23篇
  2011年   14篇
  2010年   14篇
  2009年   6篇
  2008年   20篇
  2007年   15篇
  2006年   11篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1957年   1篇
排序方式: 共有237条查询结果,搜索用时 62 毫秒
141.
Annexin A2 (AnxA2) is a Ca2+- and phospholipid-binding protein involved in many cellular regulatory processes. Like other annexins, it is constituted by two domains: a conserved core, containing the Ca2+ binding sites, and a variable N-terminal segment, containing sites for interactions with other protein partners like S100A10 (p11). A wealth of data exists on the structure and dynamics of the core, but little is known about the N-terminal domain especially in the Ca2+-induced membrane-bridging process. To investigate this protein region in the monomeric AnxA2 and in the heterotetramer (AnxA2-p11)2, the reactive Cys8 residue was specifically labelled with the fluorescent probe acrylodan and the interactions with membranes were studied by steady-state and time-resolved fluorescence. In membrane junctions formed by the (AnxA2-p11)2 heterotetramer, the flexibility of the N-terminal domain increased as compared to the protein in solution. In “homotypic” membrane junctions formed by monomeric AnxA2, acrylodan moved to a more hydrophobic environment than in the protein in solution and the flexibility of the N-terminal domain also increased. In these junctions, this domain is probably not in close contact with the membrane surface, as suggested by the weak quenching of acrylodan observed with doxyl-PCs, but pairs of N-termini likely interact, as revealed by the excimer-forming probe pyrene-maleimide bound to Cys8. We present a model of monomeric AnxA2 N-terminal domain organization in “homotypic” bridged membranes in the presence of Ca2+.  相似文献   
142.
The three-dimensional structure of IL-8/CXCL8 has been previously determined using NMR spectroscopy and X-ray crystallography, but the structure of the receptors for this chemokine has not been determined experimentally. We present here the development of a model for the structure of the IL-8/CXCL8 receptor CXCR1, using a combination of homology modeling and a molecular dynamics simulation. Based on this model, we discuss the analysis of structural, dynamic, and physicochemical properties of CXCR1. We focused on the role of pairwise ionic interactions in local structural stability of CXCR1 and the role of electrostatic potentials in recognition of CXCR1 with IL-8/CXCL8. We have performed theoretical mutations of six charged amino acids in CXCR1, which abolish binding as suggested by earlier experimental data, to shed light on the effect of charge on association ability. We propose that the observed loss of binding in the six CXCR1 mutants is owed to loss of local structural stability, rather than hindrance of the recognition process because of changes in the overall electrostatic properties of the receptor. Based on further structural analysis, we propose some mutations of charged residues involving ion pairs in different elements of transmembrane helices and extracellular loops, which are expected to alter the local structure and possibly affect binding.  相似文献   
143.
Nitric-oxide synthases (NOS) are heme-thiolate enzymes that N-hydroxylate L-arginine (L-Arg) to make NO. NOS contain a unique Trp residue whose side chain stacks with the heme and hydrogen bonds with the heme thiolate. To understand its importance we substituted His for Trp188 in the inducible NOS oxygenase domain (iNOSoxy) and characterized enzyme spectral, thermodynamic, structural, kinetic, and catalytic properties. The W188H mutation had relatively small effects on l-Arg binding and on enzyme heme-CO and heme-NO absorbance spectra, but increased the heme midpoint potential by 88 mV relative to wild-type iNOSoxy, indicating it decreased heme-thiolate electronegativity. The protein crystal structure showed that the His188 imidazole still stacked with the heme and was positioned to hydrogen bond with the heme thiolate. Analysis of a single turnover L-Arg hydroxylation reaction revealed that a new heme species formed during the reaction. Its build up coincided kinetically with the disappearance of the enzyme heme-dioxy species and with the formation of a tetrahydrobiopterin (H4B) radical in the enzyme, whereas its subsequent disappearance coincided with the rate of l-Arg hydroxylation and formation of ferric enzyme. We conclude: (i) W188H iNOSoxy stabilizes a heme-oxy species that forms upon reduction of the heme-dioxy species by H4B. (ii) The W188H mutation hinders either the processing or reactivity of the heme-oxy species and makes these steps become rate-limiting for l-Arg hydroxylation. Thus, the conserved Trp residue in NOS may facilitate formation and/or reactivity of the ultimate hydroxylating species by tuning heme-thiolate electronegativity.  相似文献   
144.
145.
Here we compare the structural and evolutionary attributes of Thermus thermophilus and Escherichia coli small ribosomal subunits (SSU). Our results indicate that with few exceptions, thermophilic 16S ribosomal RNA (16S rRNA) is densely packed compared to that of mesophilic at most of the analogous spatial regions. In addition, we have located species-specific cavity clusters (SSCCs) in both species. E. coli SSCCs are numerous and larger compared to T. thermophilus SSCCs, which again indicates densely packed thermophilic 16S rRNA. Thermophilic ribosomal proteins (r-proteins) have longer disordered regions than their mesophilic homologs and they experience larger disorder-to-order transitions during SSU-assembly. This is reflected in the predicted higher conformational changes of thermophilic r-proteins compared to their mesophilic homologs during SSU-assembly. This high conformational change of thermophilic r-proteins may help them to associate with the 16S ribosomal RNA with high complementary interfaces, larger interface areas, and denser molecular contacts, compared to those of mesophilic. Thus, thermophilic protein-rRNA interfaces are tightly associated with 16S rRNA than their mesophilic homologs. Densely packed 16S rRNA interior and tight protein-rRNA binding of T. thermophilus (compared to those of E. coli) are likely the signatures of its thermal adaptation. We have found a linear correlation between the free energy of protein-RNA interface formation, interface size, and square of conformational changes, which is followed in both prokaryotic and eukaryotic SSU. Disorder is associated with high protein-RNA interface polarity. We have found an evolutionary tendency to maintain high polarity (thereby disorder) at protein-rRNA interfaces, than that at rest of the protein structures. However, some proteins exhibit exceptions to this general trend.  相似文献   
146.

Purpose

Patients with Atrial Fibrillation (AF) and prior stroke are classified as high risk in all risk stratification schemes. A systematic review and meta-analysis was performed to compare the efficacy and safety of New Oral Anticoagulants (NOACs) to warfarin in patients with AF and previous stroke or transient ischemic attack (TIA).

Methods

Three randomized controlled trials (RCTs), including total 14527 patients, comparing NOACs (apixaban, dabigatran and rivaroxaban) with warfarin were included in the analysis. Primary efficacy endpoint was ischemic stroke, and primary safety endpoint was intracranial bleeding. Random-effects models were used to pool efficacy and safety data across RCTs. RevMan and Stata software were used for direct and indirect comparisons, respectively.

Results

In patients with AF and previous stroke or TIA, effects of NOACs were not statistically different from that of warfarin, in reduction of stroke (Odds Ratio [OR] 0.86, 95% confidence interval [CI] 0.73- 1.01), disabling and fatal stroke (OR 0.85, 95% CI 0.71-1.04), and all-cause mortality (OR 0.90, 95% CI 0.79 -1.02). Randomization to NOACs was associated with a significantly lower risk of intracranial bleeding (OR 0.42, 95% CI 0.25-0.70). There were no major differences in efficacy between apixaban, dabigatran (110 mg BID and 150 mg BID) and rivaroxaban. Major bleeding was significantly lower with apixaban and dabigatran (110 mg BID) compared with dabigatran (150 mg BID) and rivaroxaban.

Conclusion

NOACs may not be more effective than warfarin in the secondary prevention of ischemic stroke in patients with a prior history of cerebrovascular ischemia, but have a lower risk of intracranial bleeding.  相似文献   
147.
Modulation of the immune responses using active bio-ingredients as a possible prophylaxis measure has been novel prospect for aquaculture. The present study evaluated the effects of azadirachtin EC 25% on non-specific immune responses in goldfish Carassius auratus and resistance against pathogenic bacteria Aeromonas hydrophila. The experimental trial for effects of azadirachtin on immuno-haematoloical parameters in goldfish was conducted by feeding the various levels of azadirachtin as control T0 (without azadirachtin), T1 (0.1%), T2 (0.2%), T3 (0.4%), T4 (0.8%) and T5 (1.6%) for a period of 28 days. Fishes were challenged with A. hydrophila 28 days post feeding and relative percentage survival (%) was recorded over 14 days post infection. Immuno-haematoloical (total erythrocyte count, total leukocyte count, haemoglobin, packed cell volume, NBT activity, phagocytic activity, serum lysozyme activity, myeloperoxidase activity, total immunoglobulin) and serum biochemical parameters (serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) and blood glucose) of fishes were examined at 14 and 28 days of feedings. Fish fed with azadirachtin, showed significantly (p < 0.05) enhanced TEC, TLC, Total Ig, total protein, NBT activity, serum lysozyme activity and myeloperoxidase level in different treatment groups in comparison with control group. Similarly, SGOT, SGPT and blood glucose level were found to be significantly (p < 0.05) high but PCV and Hb did not differ significantly (p > 0.05) in the treatment groups compared to control groups. Azadirachtin at the concentration of 4 g kg?1 showed significantly (p < 0.05) higher relative percentage survival (42.60%) when compared with the control against A. hydrophila infection. This study indicated that azadirachtin EC 25% (4 g kg?1) showed higher NBT activity, serum lysozyme, protein profiles, leukocyte counts and resistance against A. hydrophila infection and thus, can be used as a potential immunostimulant in aquaculture.  相似文献   
148.
This study was directed to the measurement of the mechanical response of fetal membranes to physiologically relevant loading conditions. Characteristic mechanical parameters were determined and their relation to the microstructural constituents collagen and elastin as well as to the pyridinium cross-link concentrations analyzed. 51 samples from twelve fetal membranes were tested on a custom-built inflation device, which allows mechanical characterization within a multiaxial state of stress. Methods of nonlinear continuum mechanics were used to extract representative mechanical parameters. Established biochemical assays were applied for the determination of the collagen and elastin content. Collagen cross-link concentrations were determined by high-performance liquid chromatography measurements. The results indicate a distinct correlation between the mechanical parameters of high stretch stiffness and membrane tension at rupture and the biochemical data of collagen content and pyridinoline as well as deoxypyridinoline concentrations. No correlation was observed between the mechanical parameters and the elastin content. Moreover, the low stretch stiffness is, with a value of 105 ± 31 × 10?3 N/ mm much higher for a biaxial state of stress compared to a uniaxial stress configuration. Determination of constitutive model equations leads to better predictive capabilities for a reduced polynomial hyperelastic model with only terms related to the second invariant, I 2, of the right Cauchy-Green deformation tensor. Relevant insights were obtained on the mechanical behavior of fetal membranes. Collagen and its cross-linking were shown to determine membrane’s stiffness and strength for multiaxial stress states. Their nonlinear deformation behavior characterizes the fetal membranes as I 2 material.  相似文献   
149.
Sphingolipid levels are tightly regulated to maintain cellular homeostasis. During pathologic conditions such as in aging, inflammation, and metabolic and neurodegenerative diseases, levels of some sphingolipids, including the bioactive metabolite ceramide, are elevated. Sphingolipid metabolism has been linked to autophagy, a critical catabolic process in both normal cell function and disease; however, the in vivo relevance of the interaction is not well-understood. Here, we show that blocking autophagy in the liver by deletion of the Atg7 gene, which is essential for autophagosome formation, causes an increase in sphingolipid metabolites including ceramide. We also show that overexpression of serine palmitoyltransferase to elevate de novo sphingolipid biosynthesis induces autophagy in the liver. The results reveal autophagy as a process that limits excessive ceramide levels and that is induced by excessive elevation of de novo sphingolipid synthesis in the liver. Dysfunctional autophagy may be an underlying mechanism causing elevations in ceramide that may contribute to pathogenesis in diseases.  相似文献   
150.
In the development of multicellularity, signaling proteins has played a very important role. Among them, RAS family is one of the most widely studied protein family. However, evolutionary analysis has been carried out mainly on super family level leaving sub family information in scanty. Thus, a subfamily evolutionary study on RAS evolutionary expansion is imperative as it will aid in better drug designing against dreadful diseases like Cancer and other developmental diseases. The present study was aimed to understand RAS evolution on both holistic as well as reductive level. All human RAS family genes and protein were subjected to BLAST tools to find orthologs and paralogs with different parameters followed by phylogenetic tree generation. Our results clearly showed that H-RAS is the most primitive RAS in higher eukaryotes and then diverged into other RAS family members due to different gene modification events. Furthermore, a site specific selection pressure analysis was carried out using SELECTON server which showed that H-RAS, M-RAS and N-RAS are evolving faster than K-RAS and R-RAS. Thus, the results ascertain a new ground to cancer biologists to exploit negatively selected K-RAS and R-RAS as potent drug targets in cancer therapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号