首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1347篇
  免费   56篇
  2023年   7篇
  2022年   22篇
  2021年   44篇
  2020年   14篇
  2019年   25篇
  2018年   39篇
  2017年   24篇
  2016年   32篇
  2015年   66篇
  2014年   77篇
  2013年   109篇
  2012年   127篇
  2011年   102篇
  2010年   65篇
  2009年   44篇
  2008年   69篇
  2007年   77篇
  2006年   61篇
  2005年   59篇
  2004年   50篇
  2003年   43篇
  2002年   47篇
  2001年   21篇
  2000年   14篇
  1999年   8篇
  1998年   5篇
  1995年   6篇
  1994年   5篇
  1992年   5篇
  1990年   9篇
  1989年   8篇
  1988年   5篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   7篇
  1983年   4篇
  1979年   6篇
  1978年   5篇
  1977年   7篇
  1974年   3篇
  1973年   4篇
  1972年   6篇
  1971年   5篇
  1970年   5篇
  1969年   4篇
  1968年   8篇
  1967年   5篇
  1966年   6篇
  1965年   3篇
排序方式: 共有1403条查询结果,搜索用时 15 毫秒
991.
992.

Background

Glioma is the most common highly aggressive, primary adult brain tumour. Clinical data show that therapeutic approaches cannot reach the expectations in patients, thus gliomas are mainly incurable diseases. Tumour cells can adapt rapidly to alterations during therapeutic treatments related to their metabolic rewiring and profound heterogeneity in tissue environment. Renewed interests aim to develop effective treatments targeting angiogenesis, kinase activity and/or cellular metabolism. mTOR (mammalian target of rapamycin), whose hyper-activation is characteristic for many tumours, promotes metabolic alterations, macromolecule biosynthesis, cellular growth and survival. Unfortunately, mTOR inhibitors with their lower toxicity have not resulted in appreciable survival benefit. Analysing mTOR inhibitor sensitivity, other metabolism targeting treatments and their combinations could help to find potential agents and biomarkers for therapeutic development in glioma patients.

Methods

In vitro proliferation assays, protein expression and metabolite concentration analyses were used to study the effects of mTOR inhibitors, other metabolic treatments and their combinations in glioma cell lines. Furthermore, mTOR activity and cellular metabolism related protein expression patterns were also investigated by immunohistochemistry in human biopsies. Temozolomide and/or rapamycin treatments altered the expressions of enzymes related to lipid synthesis, glycolysis and mitochondrial functions as consequences of metabolic adaptation; therefore, other anti-metabolic drugs (chloroquine, etomoxir, doxycycline) were combined in vitro.

Results

Our results suggest that co-targeting metabolic pathways had tumour cell dependent additive/synergistic effects related to mTOR and metabolic protein expression patterns cell line dependently. Drug combinations, especially rapamycin?+?doxycycline may have promising anti-tumour effect in gliomas. Additionally, our immunohistochemistry results suggest that metabolic and mTOR activity alterations are not related to the recent glioma classification, and these protein expression profiles show individual differences in patients’ materials.

Conclusions

Based on these, combinations of different new/old drugs targeting cellular metabolism could be promising to inhibit high adaptation capacity of tumour cells depending on their metabolic shifts. Relating to this, such a development of current therapy needs to find special biomarkers to characterise metabolic heterogeneity of gliomas.
  相似文献   
993.
Surveys on the prevalence of various intestinal parasitic infections in different geographic regions is a prerequisite for developing appropriate control strategies. The aim of the present study was to determine the prevalence of intestinal parasitic infections in schoolchildren enrolled in various schools in Srinagar City, Kashmir, India, and to assess epidemiological factors associated with the extent of endemic disease. Stool samples were collected from 514 students enrolled in 4 middle schools. The samples were processed with the use of both simple smear and zinc sulphate concentration methods, and then microscopically examined for intestinal parasites. Of the 514 students surveyed, 46.7% had 1, or more, parasites. Prevalence of Ascaris lumbricoides was highest (28.4%), followed by Giardia lamblia (7.2%), Trichuris trichiura (4.9%), and Taenia saginata (3.7%). Conditions most frequently associated with infection included the water source, defecation site, personal hygiene, and the extent of maternal education. The study shows a relatively high prevalence of intestinal parasites and suggests an imperative for the implementation of control measures.  相似文献   
994.
Three neutralizing monoclonal antibodies (MAbs), 2G12, 2F5, and 4E10, with activity in vitro and in vivo were administered in an open-label, nonrandomized, proof-of-concept study to attempt to prevent viral rebound after interruption of antiretroviral therapy (ART). Ten human immunodeficiency virus type 1-infected individuals identified and treated with ART during acute and early infection were enrolled. The first six patients were administered 1.0 g of each of the three MAbs per infusion. The remaining four patients received 2G12 at 1.0 g/infusion and 2.0 g/infusion of 2F5 and 4E10. The MAbs were well tolerated. Grade I post-partial thromboplastin time prolongations were noted. Viral rebound was observed in 8/10 subjects (28 to 73 days post-ART interruption), and 2/10 subjects remained aviremic over the course of the study. In seven of eight subjects with viral rebound, clear resistance to 2G12 emerged, whereas reductions in the susceptibilities of plasma-derived recombinant viruses to 2F5 and 4E10 were neither sustained nor consistently measured. Viral rebound was associated with a preferential depletion of CD4(+) T cells within the gastrointestinal tract. Though safe, the use of MAbs generally delayed, but did not prevent, virologic rebound. Consideration should be given to further pilot studies with alternative combinations of MAbs and perhaps additional novel treatment modalities.  相似文献   
995.
During acute and early human immunodeficiency virus type 1 (HIV-1) infection (AEI) more than 50% of CD4+ T cells are preferentially depleted from the gastrointestinal (GI) lamina propria. To better understand the underlying mechanisms, we studied virological and immunological events within the peripheral blood (PB) and GI tract during AEI. A total of 32 AEI subjects and 18 uninfected controls underwent colonic biopsy. HIV-1 viral DNA and RNA levels were quantified in CD4+ T cells derived from the GI tract and PB by using real-time PCR. The phenotype of infected cells was characterized by using combinations of immunohistochemistry and in situ hybridization. Markers of immunological memory, activation, and proliferation were examined by flow cytometry and immunohistochemistry, and the host-derived cytotoxic cellular response was examined by using immunohistochemistry. GI CD4+ T cells harbored, on average, 13-fold higher HIV-1 viral DNA levels and 10-fold higher HIV-1 RNA levels than PB CD4+ T cells during AEI. HIV-1 RNA was detected in both "activated" and "nonactivated" mucosal CD4+ T cells. A significantly higher number of activated and proliferating T cells were detected in the GI tract compared to the PB, and a robust cytotoxic response (HIV-1 specificity not determined) was detected in the GI tract as early as 18 days postinfection. Mucosal CD4+ T-cell depletion is multifactorial. Direct viral infection likely accounts for the earliest loss of CD4+ T cells. Subsequently, ongoing infection of susceptible CD4+ T cells, along with activation-induced cellular death and host cytotoxic cellular response, are responsible for the persistence of the lesion.  相似文献   
996.
997.
998.
999.
1000.
The DevRS/DosT two‐component system is essential for mycobacterial survival under hypoxia, a prevailing stress within granulomas. DevR (also known as DosR) is activated by an inducing stimulus, such as hypoxia, through conventional phosphorylation by its cognate sensor kinases, DevS (also known as DosS) and DosT. Here, we show that the DevR regulon is activated by acetyl phosphate under ‘non‐inducing’ aerobic conditions when Mycobacterium tuberculosis devS and dosT double deletion strain is cultured on acetate. Overexpression of phosphotransacetylase caused a perturbation of the acetate kinase‐phosphotransacetylase pathway, a decrease in the concentration of acetyl phosphate and dampened the aerobic induction response in acetate‐grown bacteria. The operation of two pathways of DevR activation, one through sensor kinases and the other by acetyl phosphate, was established by an analysis of wild‐type DevS and phosphorylation‐defective DevSH395Q mutant strains under conditions partially mimicking a granulomatous‐like environment of acetate and hypoxia. Our findings reveal that DevR can be phosphorylated in vivo by acetyl phosphate. Importantly, we demonstrate that acetyl phosphate‐dependent phosphorylation can occur in the absence of DevR’s cognate kinases. Based on our findings, we conclude that anti‐mycobacterial therapy should be targeted to DevR itself and not to DevS/DosT kinases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号