首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   820篇
  免费   38篇
  2024年   3篇
  2023年   8篇
  2022年   12篇
  2021年   38篇
  2020年   9篇
  2019年   20篇
  2018年   32篇
  2017年   23篇
  2016年   32篇
  2015年   52篇
  2014年   66篇
  2013年   87篇
  2012年   89篇
  2011年   66篇
  2010年   40篇
  2009年   28篇
  2008年   41篇
  2007年   41篇
  2006年   32篇
  2005年   26篇
  2004年   29篇
  2003年   20篇
  2002年   20篇
  2001年   8篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
排序方式: 共有858条查询结果,搜索用时 15 毫秒
41.
Heat shock protein 27 controls apoptosis by regulating Akt activation   总被引:16,自引:0,他引:16  
Activation of the serine-threonine kinase Akt by cytokines, chemokines, and bacterial products delays constitutive neutrophil apoptosis, resulting in a prolonged inflammatory response. We showed previously that Akt exists in a signaling complex with p38 MAPK, MAPK-activated protein kinase-2 (MAPKAPK-2), and heat shock protein-27 (Hsp27); and Hsp27 dissociates from the complex upon neutrophil activation. To better understand the regulation of this signaling module, the hypothesis that Akt phosphorylation of Hsp27 regulates its interaction with Akt was tested. The present study shows that Akt phosphorylated Hsp27 on Ser-82 in vitro and in intact cells, and phosphorylation of Hsp27 resulted in its dissociation from Akt. Additionally, the interaction between Hsp27 and Akt was necessary for activation of Akt in intact neutrophils. Constitutive neutrophil apoptosis was accelerated by sequestration of Hsp27 from Akt, and this enhanced rate of apoptosis was reversed by introduction of constitutively active recombinant Akt. Our results define a new mechanism by which Hsp27 regulates apoptosis, through control of Akt activity.  相似文献   
42.
AGenDA: homology-based gene prediction   总被引:2,自引:0,他引:2  
We present a www server for homology-based gene prediction. The user enters a pair of evolutionary related genomic sequences, for example from human and mouse. Our software system uses CHAOS and DIALIGN to calculate an alignment of the input sequences and then searches for conserved splicing signals and start/stop codons around regions of local sequence similarity. This way, candidate exons are identified that are used, in turn, to calculate optimal gene models. The server returns the constructed gene model by email, together with a graphical representation of the underlying genomic alignment.  相似文献   
43.
The alpha 2B -adrenergic receptor ( alpha 2B -AR), a member of the G protein-coupled receptor (GPCR) superfamily, was expressed at high levels from Semliki Forest virus (SFV) vectors in mammalian cells. Constructs were engineered by fusing enhanced green fluorescent protein (eGFP) and the SFV capsid to opposite ends of the alpha 2B -AR. The receptor fusions alpha 2B -AR-eGFP and CAP- alpha 2B -AR expressed in CHO-K1 cells generated alpha 2B values of 176 and 122pmol/mg of membrane protein, respectively, and showed similar ligand binding characteristics, alpha 2B -AR subtype-selectivity, and G protein activation as reported for stable expression in CHO-K1 cells. Cryo-electron microscopy and eGFP-based fluorescence indicated the same subcellular receptor distribution. SFV expression is well suited for studies on the pharmacology, biochemistry, and cell biology of GPCRs, and for large-scale recombinant protein production in mammalian suspension culture to generate sufficient receptor quantities for structural biology.  相似文献   
44.
45.
46.
The site of action of nitrite on PS II was investigated by measuring the TL profile of nitrite-treated spinach thylakoid membranes. Three bands were observed in control, which were identified as the Q band (7 degrees C), the B band (24 degrees C) and the C band (57 degrees C). In the presence of 20 mmol/L nitrite, the intensity of the Q band decreased, the B band upshifted to 46 degrees C but the C band disappeared. The suppression of the Q band and the upshift of the B band suggested that nitrite caused inhibition at the water oxidizing complex. The effects of nitrite also remained the same in the presence of chloride. In case of ion-sufficient thylakoid membranes, nitrite decreased the Q band peak intensity and caused an upshift in the B band peak temperature. Nitrite showed similar effects in the presence of DCMU. This suggested that the site of action of nitrite is not at the acceptor side but at the donor side of PS II. The inhibition shown by nitrite has been found to be specific for nitrite anion. No other anions such as formate, fluoride or nitrate, were effective.  相似文献   
47.
48.
Heat shock protein 70 (HSP70) is an important chaperone, involved in protein folding, refolding, translocation and complex remodeling reactions under normal as well as stress conditions. However, expression of HSPA1A gene in heat and cold stress conditions associates with other chaperons and perform its function. Experimental structure for Camel HSP70 protein (cHSP70) has not been reported so far. Hence, we constructed 3D models of cHSP70 through multi- template comparative modeling with HSP110 protein of S. cerevisiae (open state) and with HSP70 protein of E. coli 70kDa DnaK (close state) and relaxed them for 100 nanoseconds (ns) using all-atom Molecular Dynamics (MD) Simulation. Two stable conformations of cHSP70 with Substrate Binding Domain (SBD) in open and close states were obtained. The collective mode analysis of different transitions of open state to close state and vice versa was examined via Principal Component Analysis (PCA) and Minimum Distance Matrix (MDM). The results provide mechanistic representation of the communication between Nucleotide Binding Domain (NBD) and SBD to identify the role of sub domains in conformational change mechanism, which leads the chaperone cycle of cHSP70. Further, residues present in the chaperon functioning site were also identified through protein-peptide docking. This study provides an overall insight into the inter domain communication mechanism and identification of the chaperon binding cavity, which explains the underlying mechanism involved during heat and cold stress conditions in camel.  相似文献   
49.
A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP) performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min-1 mg-1 for PPi, to 56 ± 11 nmol min-1 mg-1 for AMP, to 79 ± 23 nmol min-1 mg-1 for beta-glycerophosphate and to 73 ± 15 nmol min-1 mg-1 for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole – a TNAP inhibitor- served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes.  相似文献   
50.
Sinusoidal endothelial dysfunction (SED) has been found to be an early event in nonalcoholic steatohepatitis (NASH) progression but the molecular mechanisms underlying its causation remains elusive. We hypothesized that adipokine leptin worsens sinusoidal injury by decreasing functionally active nitric oxide synthase 3 (NOS)3 via miR21. Using rodent models of NASH, and transgenic mice lacking leptin and leptin receptor, results showed that hyperleptinemia caused a 4–5 fold upregulation of hepatic miR21 as assessed by qRTPCR. The upregulation of miR21 led to a time-dependent repression of its target protein Grhl3 levels as shown by western blot analyses. NOS3-p/NOS3 ratio which is controlled by Grhl3 was significantly decreased in NASH models. SED markers ICAM-1, VEGFR-2, and E-selectin as assessed by immunofluorescence microscopy were significantly up regulated in the progressive phases of NASH. Lack of leptin or its receptor in vivo, reversed the upregulation of miR21 and restored the levels of Grhl3 and NOS3-p/NOS3 ratio coupled with decreased SED dysfunction markers. Interestingly, leptin supplementation in mice lacking leptin, significantly enhanced miR21 levels, decreased Grhl3 repression and NOS3 phosphorylation. Leptin supplementation in isolated primary endothelial cells, Kupffer cells and stellate cells showed increased mir21 expression in stellate cells while sinusoidal injury was significantly higher in all cell types. Finally miR21 KO mice showed increased NOS3-p/NOS3 ratio and reversed SED markers in the rodent models of NASH. The experimental results described here show a close association of leptin-induced miR21 in aiding sinusoidal injury in NASH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号