首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   11篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   9篇
  2015年   17篇
  2014年   8篇
  2013年   18篇
  2012年   15篇
  2011年   18篇
  2010年   12篇
  2009年   12篇
  2008年   11篇
  2007年   7篇
  2006年   7篇
  2005年   8篇
  2004年   12篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   4篇
  1974年   9篇
  1973年   4篇
  1972年   1篇
  1969年   1篇
  1968年   3篇
  1967年   2篇
排序方式: 共有252条查询结果,搜索用时 15 毫秒
101.
Molten globule and other disordered states of proteins are now known to play important roles in many cellular processes. From equilibrium unfolding studies of two paralogous proteins and their variants, glutaminyl-tRNA synthetase (GlnRS) and two of its variants [glutamyl-tRNA synthetase (GluRS) and its isolated domains, and a GluRS-GlnRS chimera], we demonstrate that only GlnRS forms a molten globule-like intermediate at low urea concentrations. We demonstrated that a loop in the GlnRS C-terminal anticodon binding domain that promotes communication with the N-terminal domain and indirectly modulates amino acid binding is also responsible for stabilization of the molten globule state. This loop was inserted into GluRS in the eukaryotic branch after the archaea-eukarya split, right around the time when GlnRS evolved. Because of the structural and functional importance of the loop, it is proposed that the insertion of the loop into a putative ancestral GluRS in eukaryotes produced a catalytically active molten globule state. Because of their enhanced dynamic nature, catalytically active molten globules are likely to possess broad substrate specificity. It is further proposed that the putative broader substrate specificity allowed the catalytically active molten globule to accept glutamine in addition to glutamic acid, leading to the evolution of GlnRS.  相似文献   
102.
Lipid peroxidation products, such as 4-hydroxy-trans-2-nonenal (HNE), cause endothelial activation, and they increase the adhesion of the endothelium to circulating leukocytes. Nevertheless, the mechanisms underlying these effects remain unclear. We observed that in HNE-treated human umbilical vein endothelial cells, some of the protein-HNE adducts colocalize with the endoplasmic reticulum (ER) and that HNE forms covalent adducts with several ER chaperones that assist in protein folding. We also found that at concentrations that did not induce apoptosis or necrosis, HNE activated the unfolded protein response, leading to an increase in XBP-1 splicing, phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α, and the induction of ATF3 and ATF4. This increase in eukaryotic translation initiation factor 2α phosphorylation was prevented by transfection with protein kinase-like ER kinase siRNA. Treatment with HNE increased the expression of the ER chaperones, GRP78 and HERP. Exposure to HNE led to a depletion of reduced glutathione and an increase in the production of reactive oxygen species (ROS); however, glutathione depletion and ROS production by tert-butyl-hydroperoxide did not trigger the unfolded protein response. Pretreatment with a chemical chaperone, phenylbutyric acid, or adenoviral transfection with ATF6 attenuated HNE-induced monocyte adhesion and IL-8 induction. Moreover, phenylbutyric acid and taurine-conjugated ursodeoxycholic acid attenuated HNE-induced leukocyte rolling and their firm adhesion to the endothelium in rat cremaster muscle. These data suggest that endothelial activation by HNE is mediated in part by ER stress, induced by mechanisms independent of ROS production or glutathione depletion. The induction of ER stress may be a significant cause of vascular inflammation induced by products of oxidized lipids.  相似文献   
103.
During the G(1)-S transition, the activity of Cdk2 is regulated by its association with p27(KIP1), which in rodent fibroblasts undergoes phosphorylation mainly at serine 10, threonine 187, and C-terminal threonine 197 by KIS, Cdk2, and Pim or ROCK, respectively. Recently Cdc6 the AAA+ ATPase, identified initially to assemble pre-replicative complexes on origins of replication and later to activate p21(CIP1)-inactivated Cdk2, was found also to activate p27-bound Cdk2 but only after the bound p27 is C-terminally phosphorylated. On the other hand, the biological significance of the serine 10 phosphorylation remains elusive aside from its involvement in the stability of p27 itself. We report here that serine 10 phosphorylation is required for efficient C-terminal phosphorylation of its own by PIM and ROCK kinases and critically controls the potency of p27 as a Cdk2 inhibitor. In vitro, PIM1 and active ROCK1 efficiently phosphorylated free as well as Cdk2-bound p27 but only when the p27 was phosphorylated at Ser-10 in advance. Consistently, a Ser-10 nonphosphorylatable mutant p27 protein was not phosphorylated at the C terminus in vivo. Furthermore, when double-phosphorylated, free p27 was no longer a potent inhibitor of Cdk2, and Cdk2-bound p27 could be removed by Cdc6 to reactivate the Cdk2. Thus, phosphorylation at these two sites crucially controls the potency of this CDK inhibitor in two distinct modes.  相似文献   
104.
A Tn5-induced mutant of Mesorhizobium ciceri, TL28, requiring the amino acid lysine for growth on minimal medium was isolated and characterized. The Tn5 insertion in the mutant strain TL28 was located on a 6.8-kb EcoRI fragment of the chromosomal DNA. Complementation analysis with cloned DNA indicated that 1.269 kb of DNA of the 6.8-kb EcoRI fragment restored the wild-type phenotype of the lysine-requiring mutant. This region was further characterized by DNA sequence analysis and was shown to contain a coding sequence homologous to lysA gene of different bacteria. The lys ? mutant TL28 was unable to elicit development of effective nodules on the roots of Cicer arietinum L. There was no detectable level of lysine in the root exudates of chickpea. However, addition of lysine to the plant growth medium restored the ability of the mutant to produce effective nodules with nitrogen fixation ability on the roots of C. arietinum.  相似文献   
105.
Integrase Interactor 1 (INI1/hSNF5) is a component of the hSWI/SNF chromatin remodeling complex. The INI1 gene is either deleted or mutated in rhabdoid cancers like ATRT (Atypical terratoid and rhabdoid tumor). INI1 is also a host factor for HIV-1 replication. INI1 binds DNA non-specifically. However, the mechanism of DNA binding and its biological role are unknown. From agarose gel retardation assay (AGRA), Ni-NTA pull-down and atomic force microscopy (AFM) studies we show that amino acids 105–183 of INI1 comprise the minimal DNA binding domain (DBD). The INI1 DBD is absent in plants and in yeast SNF5. It is present in Caenorhabditis elegans SNF5, Drosophila melanogaster homologue SNR1 and is a highly conserved domain in vertebrates. The DNA binding property of this domain in SNR1, that is only 58% identical to INI1/hSNF5, is conserved. Analytical ultracentrifugation studies of INI1 DBD and INI1 DBD:DNA complexes at different concentrations show that the DBD exists as a monomer at low protein concentration and two molecules of monomer binds one molecule of DNA. At high protein concentration, it exists as a dimer and binds two DNA molecules. Furthermore, isothermal calorimetry (ITC) experiments demonstrate that the DBD monomer binds DNA with a stoichiometry (N) of ∼0.5 and Kd  = 0.94 µM whereas the DBD dimer binds two DNA molecules sequentially with K’d1 = 222 µM and K’d2 = 1.16 µM. Monomeric DBD binding to DNA is enthalpy driven (ΔH = –29.9 KJ/mole). Dimeric DBD binding to DNA is sequential with the first binding event driven by positive entropy (ΔH’1 = 115.7 KJ/mole, TΔS’1 = 136.8 KJ/mole) and the second binding event driven by negative enthalpy (ΔH’2 = –106.3 KJ/mole, TΔS’2 = –75.7 KJ/mole). Our model for INI1 DBD binding to DNA provides new insights into the mechanism of DNA binding by INI1.  相似文献   
106.
Anion exchange membrane adsorbers are used for contaminant removal in flow‐through polishing steps in the manufacture of biopharmaceuticals. This contribution describes the clearance of minute virus of mice, DNA, and host cell proteins by three commercially available anion‐exchange membranes: Sartobind Q, Mustang Q, and ChromaSorb. The Sartobind Q and Mustang Q products contain quaternary amine ligands; whereas, ChromaSorb contains primary amine based ligands. Performance was evaluated over a range of solution conditions: 0–200 mM NaCl, pH 6.0–9.0, and flow rates of 4–20 membrane volumes/min in the presence and absence of up to 50 mM phosphate and acetate. In addition contaminant clearance was determined in the presence and absence of 5 g/L monoclonal antibody. The quaternary amine based ligands depend mainly on Coulombic interactions for removal of negatively charged contaminants. Consequently, performance of Sartobind Q and Mustang Q was compromised at high ionic strength. Primary amine based ligands in ChromaSorb enable high capacities at high ionic strength due to the presence of secondary, hydrogen bonding interactions. However, the presence of hydrogen phosphate ions leads to reduced capacity. Monoclonal antibody recovery using primary amine based anion‐exchange ligands may be lower if significant binding occurs due to secondary interactions. The removal of a specific contaminant is affected by the level of removal of the other contaminants. The results of this study may be used to help guide selection of commercially available membrane absorbers for flow‐through polishing steps. Biotechnol. Bioeng. 2013; 110: 500–510. © 2012 Wiley Periodicals, Inc.  相似文献   
107.
Abstract

Cadmium is one of the most toxic contaminant causing many problems to human health and the environment. These days the world is moving toward ecofriendly and efficient techniques to remove the pollutant from the wastewater. The present study aims to investigate the tolerance of Fusarium solani toward cadmium (Cd), nickel (Ni), and lead (Pb). Maximum tolerance was observed with Cd. Cadmium removal ability of F. solani was examined from contaminated PDB medium. pH, initial concentration and time optimization for maximum removal of Cd by F. solani was also studied. The maximum removal (92.4%) was recorded at initial concentration of 50?mg/L after 144?h of incubation. Cadmium exposure increased the level of glutathione (GSH) and oxidized glutathione (GSSG) contents and the activity of catalase (CAT) in F. solani. Fourier-transform infrared spectroscopy (FTIR) analysis indicated the involvement of the different surface functional group in biosorption of Cd while Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM-EDS) analysis revealed the presence of Cd on the surface of fungal cell. The changes observed in compositions of S, P, and Cd using EDS analysis on biomass surface indicated the precipitation of Cd as CdS and Cd3(PO4)2. The XRD analysis revealed the presence of Cd3(PO4)2 on mycelia surface of F. solani.  相似文献   
108.
Aqueous leaf extract of L. speciosa (banaba) effectively decreased the blood glucose in streptozotocin-induced diabetic mice after 15th day of banaba exposure. Further, banaba leaf extract have the potential to inhibit lipid peroxidation and effectively intercept/neutralize reactive oxygen species such as super oxide, H2O2 and NO based free radicals. The aqueous banaba leaf extract (150 mg/kg bodyweight) duly reduced STZ generated reactive intermediates and radical species helping to regulate normal levels of antioxidative markers like superoxide dismutase, catalase, glutathione-S-transferase and reduced glutathione.  相似文献   
109.
A bis-amide antagonist of Smoothened, a seven-transmembrane receptor in the Hedgehog signaling pathway, was discovered via high throughput screening. In vitro and in vivo experiments demonstrated that the bis-amide was susceptible to N-acyl transferase mediated amide scission. Several bioisosteric replacements of the labile amide that maintained in vitro potency were identified and shown to be metabolically stable in vitro and in vivo.  相似文献   
110.
Density functional B3LYP method was used to investigate the preference of intra- and inter-molecular cyclizations of linear tripeptides containing tetrahydrofuran amino acids. Two distinct model pathways were conceived for the cyclization reaction, and all possible transition states and intermediates were located. Analysis of the energetics indicate intermolecular cyclization being favored by both thermodynamic and kinetic control. Geometric and NBO analyses were performed to explain the trends obtained along both the reaction pathways. Conceptual density functional theory-based reactive indices also show that reaction pathways leading to intermolecular cyclization of the tripeptides are relatively more facile compared to intramolecular cyclization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号