首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   470篇
  免费   32篇
  2024年   1篇
  2023年   5篇
  2022年   12篇
  2021年   17篇
  2020年   15篇
  2019年   17篇
  2018年   8篇
  2017年   22篇
  2016年   26篇
  2015年   30篇
  2014年   25篇
  2013年   35篇
  2012年   46篇
  2011年   32篇
  2010年   23篇
  2009年   20篇
  2008年   26篇
  2007年   15篇
  2006年   21篇
  2005年   21篇
  2004年   11篇
  2003年   12篇
  2002年   6篇
  2001年   12篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1996年   3篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1981年   3篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
排序方式: 共有502条查询结果,搜索用时 31 毫秒
151.
The photoisomerization of urocanic acid (UCA)—which is present in human skin epidermis, where it acts as a sunscreen—from its trans isomer to its cis isomer upon exposure to UV-B radiation is known to cause immunosuppression. In recent years, the antioxidant properties of UCA (it acts as a hydroxyl radical scavenger) have also been recognized. In view of this, the mechanisms of stepwise reactions of trans-UCA with up to four hydroxyl radicals were investigated. The molecular geometries of the different species and complexes involved in the reactions (reactant, intermediate and product complexes, as well as transition states) were optimized via density functional theory in the gas phase. Solvation in aqueous media was treated with single point energy calculations using DFT and the polarizable continuum model. Single point energy calculations in the gas phase and aqueous media were also carried out using second-order Møller–Plesset perturbation theory (MP2). The AUG-cc-pVDZ basis set was employed in all calculations. Corrections for basis set superposition error (BSSE) were applied. Vibrational frequency analysis was performed for each optimized structure to ensure the validity of the optimized transition states. It was found that the binding of the first OH· radical to UCA involves a positive energy barrier, while subsequent reactions of OH· radicals are exergonic. Transition states were successfully located, even in those cases where the barrier energies were found to be negative. The cis–trans isomerization barrier energy of UCA and that of the first OH· radical addition to UCA are comparable, meaning that both processes can occur simultaneously. It was found that UCA could serve as an antioxidant in the form of an efficient OH· radical scavenger.  相似文献   
152.
Epigenetic regulations of genes by reversible methylation of DNA (at the carbon-5 of cytosine) and numerous reversible modifications of histones play important roles in normal physiology and development, and epigenetic deregulations are associated with developmental disorders and various disease states, including cancer. Stem cells have the capacity to self-renew indefinitely. Similar to stem cells, some malignant cells have the capacity to divide indefinitely and are referred to as cancer stem cells. In recent times, direct correlation between epigenetic modifications and reprogramming of stem cell and cancer stem cell is emerging. Major discoveries were made with investigations on reprogramming gene products, also known as master regulators of totipotency and inducer of pluoripotency, namely, OCT4, NANOG, cMYC, SOX2, Klf4, and LIN28. The challenge to induce pluripotency is the insertion of four reprogramming genes (Oct4, Sox2, Klf4, and c-Myc) into the genome. There are always risks of silencing of these genes by epigenetic modifications in the host cells, particularly, when introduced through retroviral techniques. In this contribution, we will discuss some of the major discoveries on epigenetic modifications within the chromatin of various genes associated with cancer progression and cancer stem cells in comparison to normal development of stem cell. These modifications may be considered as molecular signatures for predicting disorders of development and for identifying disease states. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13148-010-0016-0) contains supplementary material, which is available to authorized users.  相似文献   
153.
This study examines the genes coding for enzymes involved in bovine milk oligosaccharide metabolism by comparing the oligosaccharide profiles with the expressions of glycosylation-related genes. Fresh milk samples (n = 32) were collected from four Holstein and Jersey cows at days 1, 15, 90 and 250 of lactation and free milk oligosaccharide profiles were analyzed. RNA was extracted from milk somatic cells at days 15 and 250 of lactation (n = 12) and gene expression analysis was conducted by RNA-Sequencing. A list was created of 121 glycosylation-related genes involved in oligosaccharide metabolism pathways in bovine by analyzing the oligosaccharide profiles and performing an extensive literature search. No significant differences were observed in either oligosaccharide profiles or expressions of glycosylation-related genes between Holstein and Jersey cows. The highest concentrations of free oligosaccharides were observed in the colostrum samples and a sharp decrease was observed in the concentration of free oligosaccharides on day 15, followed by progressive decrease on days 90 and 250. Ninety-two glycosylation-related genes were expressed in milk somatic cells. Most of these genes exhibited higher expression in day 250 samples indicating increases in net glycosylation-related metabolism in spite of decreases in free milk oligosaccharides in late lactation milk. Even though fucosylated free oligosaccharides were not identified, gene expression indicated the likely presence of fucosylated oligosaccharides in bovine milk. Fucosidase genes were expressed in milk and a possible explanation for not detecting fucosylated free oligosaccharides is the degradation of large fucosylated free oligosaccharides by the fucosidases. Detailed characterization of enzymes encoded by the 92 glycosylation-related genes identified in this study will provide the basic knowledge for metabolic network analysis of oligosaccharides in mammalian milk. These candidate genes will guide the design of a targeted breeding strategy to optimize the content of beneficial oligosaccharides in bovine milk.  相似文献   
154.
The thymine analog 5-chlorouridine, first reported in the 1950s as anti-tumor agent, is known as an effective mutagen, clastogen and toxicant as well as an effective inducer of sister-chromatid exchange. Recently, the first microorganism with a chemically different genome was reported; the selected Escherichia coli strain relies on the four building blocks 5-chloro-2′-deoxyuridine (ClU), A, C and G instead of the standard T, A, C, G alphabet [Marlière,P., Patrouix,J., Döring,V., Herdewijn,P., Tricot,S., Cruveiller,S., Bouzon,M. and Mutzel,R. (2011) Chemical evolution of a bacterium’s genome. Angew. Chem. Int. Ed., 50, 7109–7114]. The residual fraction of T in the DNA of adapted bacteria was <2% and the switch from T to ClU was accompanied by a massive number of mutations, including >1500 A to G or G to A transitions in a culture. The former is most likely due to wobble base pairing between ClU and G, which may be more common for ClU than T. To identify potential changes in the geometries of base pairs and duplexes as a result of replacement of T by ClU, we determined four crystal structures of a B-form DNA dodecamer duplex containing ClU:A or ClU:G base pairs. The structures reveal nearly identical geometries of these pairs compared with T:A or T:G, respectively, and no consequences for stability and cleavage by an endonuclease (EcoRI). The lack of significant changes in the geometry of ClU:A and ClU:G base pairs relative to the corresponding native pairs is consistent with the sustained unlimited self-reproduction of E. coli strains with virtually complete T→ClU genome substitution.  相似文献   
155.
GPR7 and GPR8 are recently deorphanized G-protein-coupled receptors that are implicated in the regulation of neuroendocrine function, feeding behavior, and energy homeostasis. Neuropeptide B (NPB) and neuropeptide W (NPW) are two membrane-bound hypothalamic peptides, which specifically antagonize GPR7 and GPR8. Despite years of research, an accurate estimation of structure and molecular recognition of these neuropeptide systems still remains elusive. Herein, we investigated the structure, orientation, and interaction of NPB and NPW in a dipalmitoylphosphatidylcholine bilayer using long-range molecular dynamics (MD) simulation. During 30-ns simulation, membrane-embedded helical axes of NPB and NPW tilted 30 and 15°, respectively, from the membrane normal in order to overcome possible hydrophobic mismatch with the lipid bilayer. The calculation of various structural parameters indicated that NPW is more rigid and compact as compared to NPB. Qualitatively, the peptides exhibited flexible N-terminal (residues 1–12) and rigid C-terminal α-helical parts (residues 13–21), confirming previous NMR data. A strong electrostatic attraction between C-termini and headgroup atoms caused translocation of the peptides towards lower leaflet of the bilayer. The stabilizing hydrogen bonds (H-bonds) between phosphate groups and Trp1, Lys3, and Arg15 of the peptides played important roles for membrane anchoring. MD simulations of Alanine (Ala) mutants revealed that WYK->Ala variant of NPB/NPW lacked crucial H-bond interactions with phospholipid headgroups and also caused severe misfolding in NPB. Altogether, the knowledge of preferred structural fold and interaction of neuropeptides within the membrane bilayer will be useful to develop synthetic agonist or antagonist peptides for GPR7 and GPR8.  相似文献   
156.
We have studied the binding interactions of biologically important carbohydrates (d-glucose, d-xylose and d-mannose) with the newly synthesized five-coordinate dinuclear copper(II) complex, [Cu2(hpnbpda)(μ-OAc)] (1) and zinc(II) complex, [Zn2(hpnbpda)(μ-OAc)] (2) [H3hpnbpda = N,N′-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N′-diacetic acid] in aqueous alkaline solution. The complexes 1 and 2 are fully characterized both in solid and solution using different analytical techniques. A geometrical optimization was made of the ligand H3hpnbpda and the complexes 1 and 2 by molecular mechanics (MM+) method in order to establish the stable conformations. All carbohydrates bind to the metal complexes in a 1:1 molar ratio. The binding events have been investigated by a combined approach of FTIR, UV–vis and 13C NMR spectroscopic techniques. UV–vis spectra indicate a significant blue shift of the absorption maximum of complex 1 during carbohydrate coordination highlighting the sugar binding ability of complex 1. The apparent binding constants of the substrate-bound copper(II) complexes have been determined from the UV–vis titration experiments. The binding ability and mode of binding of these sugar substrates with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in 13C NMR spectra for carbon atoms C1, C2, and C3 of sugar substrates.  相似文献   
157.
A water-soluble glucan, isolated from the alkaline extract of the fruit bodies of an edible mushroom, Lentinus squarrosulus (Mont.) Singer was found to consist of (1→3,6)-linked, (1→3)-linked, (1→6)-linked, and terminal β-d-glucopyranosyl moieties in a relative proportion of approximately 1:2:1:1. This polysaccharide showed optimum activation of macrophages as well as splenocytes and thymocytes at 10 μg/mL. Structural investigation was carried out using sugar analysis, methylation analysis, periodate oxidation study, and NMR experiments (1H, 13C, DEPT-135, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC). On the basis of above-mentioned experiments, the structure of the repeating unit of the polysaccharide was established as:  相似文献   
158.
Robust estimates of CO2 budget, CO2 exchanged between the atmosphere and terrestrial biosphere, are necessary to better understand the role of the terrestrial biosphere in mitigating anthropogenic CO2 emissions. Over the past decade, this field of research has advanced through understanding of the differences and similarities of two fundamentally different approaches: “top‐down” atmospheric inversions and “bottom‐up” biosphere models. Since the first studies were undertaken, these approaches have shown an increasing level of agreement, but disagreements in some regions still persist, in part because they do not estimate the same quantity of atmosphere–biosphere CO2 exchange. Here, we conducted a thorough comparison of CO2 budgets at multiple scales and from multiple methods to assess the current state of the science in estimating CO2 budgets. Our set of atmospheric inversions and biosphere models, which were adjusted for a consistent flux definition, showed a high level of agreement for global and hemispheric CO2 budgets in the 2000s. Regionally, improved agreement in CO2 budgets was notable for North America and Southeast Asia. However, large gaps between the two methods remained in East Asia and South America. In other regions, Europe, boreal Asia, Africa, South Asia, and Oceania, it was difficult to determine whether those regions act as a net sink or source because of the large spread in estimates from atmospheric inversions. These results highlight two research directions to improve the robustness of CO2 budgets: (a) to increase representation of processes in biosphere models that could contribute to fill the budget gaps, such as forest regrowth and forest degradation; and (b) to reduce sink–source compensation between regions (dipoles) in atmospheric inversion so that their estimates become more comparable. Advancements on both research areas will increase the level of agreement between the top‐down and bottom‐up approaches and yield more robust knowledge of regional CO2 budgets.  相似文献   
159.
The use of primary cardiomyocytes (CMs) in culture has provided a powerful complement to murine models of heart disease in advancing our understanding of heart disease. In particular, the ability to study ion homeostasis, ion channel function, cellular excitability and excitation-contraction coupling and their alterations in diseased conditions and by disease-causing mutations have led to significant insights into cardiac diseases. Furthermore, the lack of an adequate immortalized cell line to mimic adult CMs, and the limitations of neonatal CMs (which lack many of the structural and functional biomechanics characteristic of adult CMs) in culture have hampered our understanding of the complex interplay between signaling pathways, ion channels and contractile properties in the adult heart strengthening the importance of studying adult isolated cardiomyocytes. Here, we present methods for the isolation, culture, manipulation of gene expression by adenoviral-expressed proteins, and subsequent functional analysis of cardiomyocytes from the adult mouse. The use of these techniques will help to develop mechanistic insight into signaling pathways that regulate cellular excitability, Ca2+ dynamics and contractility and provide a much more physiologically relevant characterization of cardiovascular disease.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号