首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3665篇
  免费   373篇
  4038篇
  2022年   24篇
  2021年   47篇
  2019年   36篇
  2018年   48篇
  2017年   41篇
  2016年   75篇
  2015年   111篇
  2014年   123篇
  2013年   164篇
  2012年   220篇
  2011年   214篇
  2010年   171篇
  2009年   112篇
  2008年   203篇
  2007年   172篇
  2006年   173篇
  2005年   182篇
  2004年   196篇
  2003年   181篇
  2002年   146篇
  2001年   75篇
  2000年   61篇
  1999年   69篇
  1998年   52篇
  1997年   38篇
  1996年   40篇
  1995年   52篇
  1994年   43篇
  1993年   36篇
  1992年   54篇
  1991年   40篇
  1990年   51篇
  1989年   48篇
  1988年   30篇
  1987年   26篇
  1986年   40篇
  1985年   29篇
  1984年   44篇
  1983年   35篇
  1982年   41篇
  1981年   26篇
  1980年   31篇
  1979年   37篇
  1978年   33篇
  1977年   35篇
  1976年   25篇
  1975年   39篇
  1974年   27篇
  1973年   32篇
  1972年   30篇
排序方式: 共有4038条查询结果,搜索用时 10 毫秒
91.
The aim of this study was to investigate the ability of Pantoea agglomerans, a plant growth-promoting bacterium, to colonize various regions and tissues of the wheat plant (Triticum aestivum L.) by using different inoculation methods and inoculum concentrations. In addition, the enzyme-linked immunosorbent assay (ELISA) and transmission electron microscopy (TEM) were used to determine: (a) the ability of the bacterial cells to grow and survive both on the surface and within internal tissue of the plant and (b) the response of the plant to bacterial infection. After inoculation, cells of the diazotrophic bacterial strain P. agglomerans were found to be located in roots, stems and leaves. Colony development of bacterial cells was only detected within intercellular spaces of the root and on the root surface. However, single bacterial cells were observed in leaves and stems on the surface of the epidermis, in the vicinity to stomatal cells, within intercellular spaces of the mesophyll and within xylem vessels. Inoculated bacterial cells were found to be able to enter host tissues, to multiply in the plant and to maintain a delicate relationship between endophyte and host. The density of bacterial settlement in the plant in all experiments was about 106 to 107 cells per mL root or shoot sap. Establishment was confirmed by a low coefficient of variation of ELISA means at these concentrations.  相似文献   
92.
93.
A number of studies have demonstrated increased synthesis of heat shock proteins in brain following hyperthermia or transient ischemia. In the present experiments we have characterized the time course of heat shock RNA induction in gerbil brain after ischemia, and in several mouse tissues after hyperthermia, using probes for RNAs of the 70-kilodalton heat shock protein (hsp70) family, as well as ubiquitin. A synthetic oligonucleotide selective for inducible hsp70 sequences proved to be the most sensitive indicator of the stress response whereas a related rat cDNA detected both induced RNAs and constitutively expressed sequences that were not strongly inducible in brain. Considerable polymorphism of ubiquitin sequences was evident in the outbred mouse and gerbil strains used in these studies when probed with a chicken ubiquitin cDNA. Brief hyperthermic exposure resulted in striking induction of hsp70 and several-fold increases in ubiquitin RNAs in mouse liver and kidney peaking 3 h after return to room temperature. The oligonucleotide selective for hsp70 showed equivalent induction in brain that was more rapid and transient than observed in liver, whereas minimal induction was seen with the ubiquitin and hsp70-related cDNA probes. Transient ischemia resulted in 5- to 10-fold increases in hsp70 sequences in gerbil brain which peaked at 6 h recirculation and remained above control levels at 24 h, whereas a modest 70% increase in ubiquitin sequences was noted at 6 h. These results demonstrate significant temporal and quantitative differences in heat shock RNA expression between brain and other tissues following hyperthermia in vivo, and indicate that hsp70 provides a more sensitive index of the stress response in brain than does ubiquitin after both hyperthermia and ischemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
94.

Introduction  

The aim of this study was to examine IL-17A in patients, following anti-TNF-α therapy and the effect of IL-17A on matrix turnover and cartilage degradation.  相似文献   
95.
A novel mini-scale chemostat system was developed for the physiological characterization of 10-ml cultures. The parallel operation of eight such mini-scale chemostats was exploited for systematic 13C analysis of intracellular fluxes over a broad range of growth rates in glucose-limited Escherichia coli. As expected, physiological variables changed monotonously with the dilution rate, allowing for the assessment of maintenance metabolism. Despite the linear dependence of total cellular carbon influx on dilution rate, the distribution of almost all major fluxes varied nonlinearly with dilution rate. Most prominent were the distinct maximum of glyoxylate shunt activity and the concomitant minimum of tricarboxylic acid cycle activity at low to intermediate dilution rates of 0.05 to 0.2 h−1. During growth on glucose, this glyoxylate shunt activity is best understood from a network perspective as the recently described phosphoenolpyruvate (PEP)-glyoxylate cycle that oxidizes PEP (or pyruvate) to CO2. At higher or extremely low dilution rates, in vivo PEP-glyoxylate cycle activity was low or absent. The step increase in pentose phosphate pathway activity at around 0.2 h−1 was not related to the cellular demand for the reduction equivalent NADPH, since NADPH formation was 20 to 50% in excess of the anabolic demand at all dilution rates. The results demonstrate that mini-scale continuous cultivation enables quantitative and parallel characterization of intra- and extracellular phenotypes in steady state, thereby greatly reducing workload and costs for stable-isotope experiments.  相似文献   
96.
Human mesenchymal stromal cells (hMSCs) represent an attractive cell source for clinic applications. Besides being multi‐potent, recent clinical trials suggest that they secrete both trophic and immunomodulatory factors, allowing allogenic MSCs to be used in a wider variety of clinical situations. The yield of prospective isolation is however very low, making expansion a required step toward clinical applications. Unfortunately, this leads to a significant decrease in their stemness. To identify the mechanism behind loss of multi‐potency, hMSCs were expanded until replicative senescence and the concomitant molecular changes were characterized at regular intervals. We observed that, with time of culture, loss of multi‐potency was associated with both the accumulation of DNA damage and the respective activation of the DNA damage response pathway, suggesting a correlation between both phenomena. Indeed, exposing hMSCs to DNA damage agents led to a significant decrease in the differentiation potential. We also showed that hMSCs are susceptible to accumulate DNA damage upon in vitro expansion, and that although hMSCs maintained an effective nucleotide excision repair activity, there was a progressive accumulation of DNA damage. We propose a model in which DNA damage accumulation contributes to the loss of differentiation potential of hMSCs, which might not only compromise their potential for clinical applications but also contribute to the characteristics of tissue ageing.  相似文献   
97.
Proliferation and differentiation of neural stem cells (NSCs) have a crucial role to ensure neurogenesis and gliogenesis in the mammalian brain throughout life. As there is growing evidence for the significance of metabolism in regulating cell fate, knowledge on the metabolic programs in NSCs and how they evolve during differentiation into somatic cells may provide novel therapeutic approaches to address brain diseases. In this work, we applied a quantitative analysis to assess how the central carbon metabolism evolves upon differentiation of NSCs into astrocytes. Murine embryonic stem cell (mESC)-derived NSCs and astrocytes were incubated with labelled [1-13C]glucose and the label incorporation into intracellular metabolites was followed by GC-MS. The obtained 13C labelling patterns, together with uptake/secretion rates determined from supernatant analysis, were integrated into an isotopic non-stationary metabolic flux analysis (13C-MFA) model to estimate intracellular flux maps. Significant metabolic differences between NSCs and astrocytes were identified, with a general downregulation of central carbon metabolism during astrocytic differentiation. While glucose uptake was 1.7-fold higher in NSCs (on a per cell basis), a high lactate-secreting phenotype was common to both cell types. Furthermore, NSCs consumed glutamine from the medium; the highly active reductive carboxylation of alpha-ketoglutarate indicates that this was converted to citrate and used for biosynthetic purposes. In astrocytes, pyruvate entered the TCA cycle mostly through pyruvate carboxylase (81%). This pathway supported glutamine and citrate secretion, recapitulating well described metabolic features of these cells in vivo. Overall, this fluxomics study allowed us to quantify the metabolic rewiring accompanying astrocytic lineage specification from NSCs.  相似文献   
98.
Methylation of 2-125I-lysergic acid diethylamide (125I-LSD) at the N1 position produces a new derivative, N1-methyl-2-125I-lysergic acid diethylamide (125I-MIL), with improved selectivity and higher affinity for serotonin 5-HT2 receptors. In rat frontal cortex homogenates, specific binding of 125I-MIL represents 80-90% of total binding, and the apparent dissociation constant (KD) for serotonin 5-HT2 receptors is 0.14 nM (using 2 mg of tissue/ml). 125I-MIL also displays a high affinity for serotonin 5-HT1C receptors, with an apparent dissociation constant of 0.41 nM at this site. 125I-MIL exhibits at least 60-fold higher affinity for serotonin 5-HT2 receptors than for other classes of neurotransmitter receptors, with the dopamine D2 receptor as its most potent secondary binding site. Studies of the association and dissociation kinetics of 125I-MIL reveal a strong temperature dependence, with very slow association and dissociation rates at 0 degree C. Autoradiographic experiments confirm the improved specificity of 125I-MIL. Selective labeling of serotonin receptors was observed in all brain areas examined. In vivo binding studies in mice indicate that 125I-MIL is the best serotonin receptor label yet described, with the highest frontal cortex to cerebellum ratio of any serotonergic radioligand. 125I-MIL is a promising ligand for both in vitro and in vivo labeling of serotonin receptors in the mammalian brain.  相似文献   
99.
100.
AAA+ proteases are frequently regulated by adaptors that modulate spatial and temporal control of protein turnover. Caulobacter crescentus is an alpha-proteobacterium which requires protein degradation by the AAA+ ClpXP protease for cell-cycle progression, and contains an adaptor (SspBalpha) that binds ssrA-tagged proteins and targets them to ClpXP. Here we determine the tag-binding specificity and crystal structure of SspBalpha. Despite poor sequence homology, the overall SspBalpha fold resembles orthologs from other bacteria. However, several structural features are specific to the SspBalpha subfamily, including the dimerization interface, binding surfaces optimized for ssrA-tag delivery, and residues in the tag-binding groove that act as selectivity gatekeepers for substrate recognition. Mutagenesis of these residues broadens specificity, creating a promiscuous adaptor that recognizes an expanded substrate repertoire. These results highlight general features of adaptor-mediated substrate recognition and shed light on design principles that underlie adaptor function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号