全文获取类型
收费全文 | 3544篇 |
免费 | 293篇 |
国内免费 | 3篇 |
专业分类
3840篇 |
出版年
2023年 | 22篇 |
2022年 | 52篇 |
2021年 | 99篇 |
2020年 | 69篇 |
2019年 | 72篇 |
2018年 | 108篇 |
2017年 | 98篇 |
2016年 | 126篇 |
2015年 | 146篇 |
2014年 | 182篇 |
2013年 | 258篇 |
2012年 | 267篇 |
2011年 | 271篇 |
2010年 | 161篇 |
2009年 | 125篇 |
2008年 | 164篇 |
2007年 | 142篇 |
2006年 | 169篇 |
2005年 | 146篇 |
2004年 | 128篇 |
2003年 | 86篇 |
2002年 | 83篇 |
2001年 | 73篇 |
2000年 | 51篇 |
1999年 | 56篇 |
1998年 | 27篇 |
1997年 | 35篇 |
1996年 | 23篇 |
1995年 | 31篇 |
1994年 | 14篇 |
1993年 | 12篇 |
1992年 | 35篇 |
1991年 | 31篇 |
1990年 | 33篇 |
1989年 | 30篇 |
1988年 | 29篇 |
1987年 | 22篇 |
1986年 | 25篇 |
1985年 | 32篇 |
1984年 | 26篇 |
1983年 | 22篇 |
1982年 | 32篇 |
1981年 | 20篇 |
1980年 | 30篇 |
1979年 | 25篇 |
1978年 | 12篇 |
1977年 | 24篇 |
1974年 | 15篇 |
1973年 | 15篇 |
1972年 | 14篇 |
排序方式: 共有3840条查询结果,搜索用时 10 毫秒
91.
The genipin cross-linked alginate-chitosan (GCAC) microcapsule, composed of an alginate core and a genipin cross-linked chitosan membrane, was recently proposed for live cell encapsulation and other delivery applications. This article for the first time describes the details of the microcapsule membrane characterization using a noninvasive and in situ method without any physical or chemical modifications on the samples. Results showed that the cross-linking reaction generated the fluorescent chitosan-genipin conjugates. The cross-linked chitosan membrane was clearly visualized by confocal laser scanning microscopy (CLSM). A straightforward assessment on the membrane thickness and relative intensity was successfully achieved. CLSM studies showed that the shell-like cross-linked chitosan membranes of approximately 37 microm in thickness were formed surrounding the microcapsule. The reaction variables, including cross-linking temperature and time significantly affected the fluorescence intensity of the membranes. Elevating the cross-linking temperature from 4 to 37 degrees C drastically intensified the membrane fluorescence, suggesting the attainment of a high degree of cross-linking on the chitosan membrane. Extended cross-linking time altered the cross-linked membranes in modulation. Although genipin concentration and cross-linking time had little effects on the membrane thickness, cross-linking at higher temperatures tended to form relatively thinner membranes. 相似文献
92.
Li Q Guo Y Tan W Stein AB Dawn B Wu WJ Zhu X Lu X Xu X Siddiqui T Tiwari S Bolli R 《American journal of physiology. Heart and circulatory physiology》2006,290(2):H584-H589
Previous studies have shown that gene therapy with inducible nitric oxide synthase (iNOS) protects against myocardial infarction at 3 days after gene transfer. However, the long-term effects of iNOS gene therapy on myocardial ischemic injury and cardiac function are unknown. To address this issue, we used a recombinant adenovirus 5 (Ad5) vector (Av3) with deletions of the E1, E2a, and E3 regions, which enables long-lasting recombinant gene expression for at least 2 mo due to lack of inflammation. Mice received intramyocardial injections in the left ventricular (LV) anterior wall of Av3/LacZ (LacZ group) or Av3/iNOS (iNOS group); 1 or 2 mo later, they were subjected to myocardial infarction (30-min coronary occlusion followed by 4 h of reperfusion). Cardiac iNOS gene expression was confirmed by immunoblotting and activity assays at 1 and 2 mo after gene transfer. In the iNOS group, infarct size (percentage of risk region) was significantly reduced (P < 0.05) both at 1 mo (24.2 +/- 3.4%, n = 6, vs. 48.0 +/- 3.6%, n = 8, in the LacZ group) and at 2 mo (23.4 +/- 3.1%, n = 8, vs. 36.6 +/- 2.4%, n = 7). The infarct-sparing effects of iNOS gene therapy were as powerful as those observed 24 h after ischemic preconditioning (23.1 +/- 3.4%, n = 10). iNOS gene transfer had no effect on LV function or dimensions up to 8 wk later (echocardiography). These data demonstrate that iNOS gene therapy mediated by the Av3 vector affords long-term (2 mo) cardioprotection without inflammation or adverse functional consequences, a finding that provides a rationale for further preclinical testing of this therapy. 相似文献
93.
Washington MT Johnson RE Prakash S Prakash L 《The Journal of biological chemistry》1999,274(52):36835-36838
The yeast RAD30 gene functions in error-free replication of UV-damaged DNA, and RAD30 encodes a DNA polymerase, pol eta, that has the ability to efficiently and correctly replicate past a cis-syn-thymine-thymine dimer in template DNA. To better understand the role of pol eta in damage bypass, we examined its fidelity and processivity on nondamaged DNA templates. Steady-state kinetic analyses of deoxynucleotide incorporation indicate that pol eta has a low fidelity, misincorporating deoxynucleotides with a frequency of about 10(-2) to 10(-3). Also pol eta has a low processivity, incorporating only a few nucleotides before dissociating. We suggest that pol eta's low fidelity reflects a flexibility in its active site rendering it more tolerant of DNA damage, while its low processivity limits its activity to reduce errors. 相似文献
94.
Background
Substituted catechols are important precursors for large-scale synthesis of pharmaceuticals and other industrial products. Most of the reported chemical synthesis methods are expensive and insufficient at industrial level. However, biological processes for production of substituted catechols could be highly selective and suitable for industrial purposes. 相似文献95.
A new alkaloid, 3-methoxy-4,6-dihydroxymorphinandien-7-one, and norsinoacutine have been isolated from extracts of Croton bonplandianum. 相似文献
96.
Tiwari D Kamble J Chilgunde S Patil P Maru G Kawle D Bhartiya U Joseph L Vanage G 《Mutation research》2012,743(1-2):83-90
Bisphenol A (BPA) is a well-known endocrine disruptor (ED) which represents a major toxicological and public health concern due to its widespread exposure to humans. BPA has been reported to induce DNA adduct and aneuploidy in rodents. Recent studies in humans depicted its association with recurrent miscarriages and male infertility due to sperm DNA damage indicating that BPA might have genotoxic activity. Hence, the present study was designed to determine genotoxic and mutagenic effects of BPA using in-vivo and in-vitro assays. The adult male and female rats were orally administered with various doses of BPA (2.4 μg, 10 μg, 5mg and 50mg/kgbw) once a day for six consecutive days. Animals were sacrificed, bone marrow and blood samples were collected and subjected to series of genotoxicity assay such as micronucleus, chromosome aberration and single cell gel electrophoresis (SCGE) assay respectively. Mutagenicity was determined using tester strains of Salmonella typhimurium (TA 98, TA 100 and TA 102) in the presence and absence of metabolically active microsomal fractions (S9). Further, we estimated the levels of 8-hydroxydeoxyguanosine, lipid per-oxidation and glutathione activity to decipher the potential genotoxic mechanism of BPA. We observed that BPA exposure caused a significant increase in the frequency of micronucleus (MN) in polychromatic erythrocytes (PCEs), structural chromosome aberrations in bone marrow cells and DNA damage in blood lymphocytes. These effects were observed at various doses tested except 2.4 μg compared to vehicle control. We did not observe the mutagenic response in any of the tester strains tested at different concentrations of BPA. We found an increase in the level of 8-hydroxydeoxyguanosine in the plasma and increase in lipid per-oxidation and decrease in glutathione activity in liver of rats respectively which were exposed to BPA. In conclusion, the data obtained clearly documents that BPA is not mutagenic but exhibit genotoxic activity and oxidative stress could be one of the mechanisms leading to genetic toxicity. 相似文献
97.
Fiona C. Lewis‐McDougall Prashant J. Ruchaya Eva Domenjo‐Vila Tze Shin Teoh Larissa Prata Beverley J. Cottle James E. Clark Prakash P. Punjabi Wael Awad Daniele Torella Tamara Tchkonia James L. Kirkland Georgina M. Ellison‐Hughes 《Aging cell》2019,18(3)
Aging leads to increased cellular senescence and is associated with decreased potency of tissue‐specific stem/progenitor cells. Here, we have done an extensive analysis of cardiac progenitor cells (CPCs) isolated from human subjects with cardiovascular disease, aged 32–86 years. In aged subjects (>70 years old), over half of CPCs are senescent (p16INK4A, SA‐β‐gal, DNA damage γH2AX, telomere length, senescence‐associated secretory phenotype [SASP]), unable to replicate, differentiate, regenerate or restore cardiac function following transplantation into the infarcted heart. SASP factors secreted by senescent CPCs renders otherwise healthy CPCs to senescence. Elimination of senescent CPCs using senolytics abrogates the SASP and its debilitative effect in vitro. Global elimination of senescent cells in aged mice (INK‐ATTAC or wild‐type mice treated with D + Q senolytics) in vivo activates resident CPCs and increased the number of small Ki67‐, EdU‐positive cardiomyocytes. Therapeutic approaches that eliminate senescent cells may alleviate cardiac deterioration with aging and restore the regenerative capacity of the heart. 相似文献
98.
99.
Over two billion people, depending largely on staple foods, suffer from deficiencies in protein and some micronutrients such as iron and zinc. Among various approaches to overcome protein and micronutrient deficiencies, biofortification through a combination of conventional and molecular breeding methods is the most feasible, cheapest, and sustainable approach. An interspecific cross was made between the wheat cultivar 'Chinese Spring' and Aegilops kotschyi Boiss. accession 396, which has a threefold higher grain iron and zinc concentrations and about 33% higher protein concentration than wheat cultivars. Recurrent backcrossing and selection for the micronutrient content was performed at each generation. Thirteen derivatives with high grain iron and zinc concentrations and contents, ash and ash micronutrients, and protein were analyzed for alien introgression. Morphological markers, high molecular weight glutenin subunit profiles, anchored wheat microsatellite markers, and GISH showed that addition and substitution of homoeologous groups 1, 2, and 7 chromosomes of Ae. kotschyi possess gene(s) for high grain micronutrients. The addition of 1U/1S had high molecular weight glutenin subunits with higher molecular weight than those of wheat, and the addition of 2S in most of the derivatives also enhanced grain protein content by over 20%. Low grain protein content in a derivative with a 2S-wheat translocation, waxy leaves, and absence of the gdm148 marker strongly suggests that the gene for higher grain protein content on chromosome 2S is orthologous to the grain protein QTL on the short arm of group 2 chromosomes. 相似文献
100.
Eukaryotic cells utilize two main secretory pathways to transport proteins to the extracellular space. Proteins with a leader signal sequence often undergo co‐translational transport into the endoplasmic reticulum (ER), and then to the Golgi apparatus before they reach their destination. This pathway is called the conventional secretory pathway. Proteins without signal peptides can bypass this ER‐Golgi system and are secreted by a variety of mechanisms collectively called the unconventional secretory pathway. The molecular mechanisms of unconventional secretion are emerging. Autophagy is a conserved bulk degradation mechanism that regulates many intracellular functions. Recent evidence implicates autophagy in the secretory pathway. This review focuses on potential secretory roles of autophagy and how they could modulate the functions of innate immune cells that secrete a wide range of mediators in response to environmental and biological stimuli. We provide a brief overview of the secretory pathways, enumerate the potential mechanistic themes by which autophagy interacts with these pathways and describe their relevance in the context of innate immune cell function. 相似文献